
MPIM: Multi-Purpose In-Memory Processing Using Configurable

Resistive Memory

Mohsen Imani, Yeseong Kim, Tajana Rosing

Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA

{moimani, yek048, Tajana}@ucsd.edu

Abstract - Running Internet of Things applications on general

purpose processors results in a large energy and performance

overhead, due to the high cost of data movement. Processing in-

memory is a promising solution to reduce the data movement

cost by processing the data locally inside the memory. In this

paper, we design a Multi-Purpose In-Memory Processing

(MPIM) system, which can be used as main memory and for

processing. MPIM consists of multiple crossbar memories with

the capability of efficient in-memory computations. Instead of

transferring the large dataset to the processors, MPIM provides

two important in-memory processing capabilities: i) data

searching for the nearest neighbor ii) bitwise operations

including OR, AND and XOR with small analog sense amplifiers.

The experimental results show that the MPIM can achieve up to

5.5x energy savings and 19x speedup for the search operations as

compared to AMD GPU-based implementation. For bitwise

vector processing, we present 11000x energy improvements with

62x speedup over the SIMD-based computation, while

outperforming other state-of-the-art in-memory processing

techniques.

I. Introduction

Internet of Things (IoT) designs are moving toward more
data-driven and autonomous information retrieving solutions.
The rate of data generation and the size of application
datasets are anticipated to increase significantly [1-3] . A
fundamental requirement for efficient IoT hardware designs is
high performance and energy efficiency for large scale data
computations.

There is a large body of research on processor architectures
for efficient data processing. A popular solution is to leverage
parallel architectures that mask the computation burden by
taking advantage of multiple general purpose processors [4].
However, even using the massively many core systems
consisting of CPUs and GPUs, the current system architecture
cannot efficiently process large datasets. This inefficiency is
the inevitable consequence of the large amount of data
movements across the memory hierarchy due to small cache
capacity and limited memory bandwidth. For example, one of
the critical operations in IoT applications is fast search
through a dataset and classification of data via search [5].
Other applications for graph processing [6], digital signal
processing [7], communication [8] perform frequent bitwise
computations for fetched memory data.

Processing in-memory (PIM) has been considered as a
promising solution which could overcome the inefficiency in
today’s systems [9-12]. Instead of sending a large amount of
data to the processing units for computation, PIM-based

memories perform the computation inside the memory, thus
the application performance can be accelerated by avoiding
the memory access bottleneck [13]. However, integrating
memory and logic on same die is not cost effective since high
density memories and high performance logic require
different design rules. 3D stacking has recently opened new
opportunities in this area since memory can easily interact
with computational logic [14]. However, this technique
requires massive through-silicon-vias to connect logic to
multi-layer memory stack [14]. For example, the work
published in [15],[16] enables memory-based computation
using large digital peripheral circuitries.

In this paper, we propose a new resistive memory design,
called MPIM, which supports multiple in-memory processing
operations in addition to traditional memory functionality.
We design a cost-efficient PIM by utilizing analog
characteristics of emerging non-volatile memory (NVM)
technology. We address two important requirements to
process the large amount of data stored in memory rows on
our high-density crossbar memristor devices integraded in 3D
on top of DRAM. First, we support a fast search operation to
find the data of interest. Second, MPIM also supports bitwise
operations even for multiple operands stored in different
rows. When MPIM is configured to optimize search, it
performs row-parallel search based on the timing difference
of discharging current over the number of mismatched bits.
For bitwise computation, we exploit an analog sense amplifier
which can act as an AND, OR, and XOR gate. We
implemented the proposed MPIM design using HSPICE
simulator, and compare the energy and performance to recent
processor architectures and state of the art PIM designs [16,
17]. Our experimental results show that running k-nearest
neighbor (k-NN) search operation can improve energy and

performance by 5.5x and 19x respectively compared to GPU-
based k-NN running on AMD Southern Island GPU. MPIM

can achieve 11000x energy efficiency improvement and 62x
speedup for bitwise operations compared to GPU-based
SIMD machine. We also show that our design also
outperforms existing state-of-the-art in-memory processing

techniques [16, 17] by 1.8x and 6.7x in terms of the energy
and performance respectively. All these advantages are
achieved with less than 5.1% area overhead compared to
conventional NVM with just memory support.

II. Related Work

Processing in-memory can accelerate computation by
reducing the overhead of data movement [18-20]. Early PIM
designs integrate high performance CMOS logic and memory

on the same die. For example, the associative memory
performs memory-based computation using content
addressable memories (CAM) [21]. In CMOS technology,
CAMs are designed with SRAM cells to provide high
performance at significant energy cost for each search
operations. Work in [20] also enables in-memory processing
for some instruction types without changing the existing
sequential programing model. The work in [5] designed a
custom processing unit next to DRAM sense amplifiers to
support slow row-serial search operation. However, to
process other computing operations, processor cores are
added as dedicated building blocks, making the
manufacturing process complicated and costly.

The emerging NVM technology such as phase change
memory, spin-transfer torque magnetic random access
memory, and resistive RAM are good candidates to design
memory [22-27], or enable PIM [15, 20, 28] due to its high
density, low-power consumption, and scalability. For
example, work in [19] presents a bit-serial TCAM design
which addresses the limited flexibility of NVM-based
TCAMs. Work in [17] exploits analog characteristic on
NVMs to perform bitwise computations with two rows as its
operands. These techniques perform in-memory computing
for relatively small data sizes. One way to handle larger
datasets is to support scalable computational operations as
well as search functionality inside the TCAM. Our proposed
design enables multiple in-memory operations, which are
designed to process a large amount of data, in addition to
original memory functionality. For example, the supported in-
memory computations can process bulk OR operations for
more than 200 rows which is ~2x faster than state-of-the-art
PIMs.

III. Multi-Purpose In-Memory Processing

In this paper, we propose a multi-purpose resistive memory,
called MPIM. Table 1 summarizes three key functionalities of
MPIM with their application domains: i) load/store
operations as an additional memory next to DRAM, ii)
nearest neighbor search operation and iii) bitwise
computation. First, as a memory, MPIM is excellent for more
read intensive data which is often used for in-memory
computation, while other frequently-updated data can be kept
in DRAM. Second, MPIM supports a block-serial row
parallel search operation that can be used as a building block
for several applications which require this type of search.
MPIM also supports bulk bitwise computations including OR,

AND, XOR. This capability allows us to use MPIM to process
general streaming applications such as multimedia and graph
processing.

Table 1. MPIM operations and application examples

MPIM Operation Applications

Memory Non-write intensive workloads, keeping reference data

Bitwise

computation

Stream processing, Multimedia, Graph processing,

Digital signal processing, communication/security

Nearest neighbor

search

Machine learning, Clustering, Statistical

classifications, Database, Pattern recognition,

Computer vision, Coding, Data compression

Figure 1 shows an architecture of the proposed MPIM. It
consists of multiple memory banks which play a role of both
memory and processing units. As a memory, MPIM can store
and load general data. Stored data can be used for further
processing. For data which will be used for in-memory
processing, the main processor can request the data to be
directly fetched from the hard disk to MPIM instead of

DRAM. MPIM includes B banks, where each bank contains

C crossbar memory which can be configured as either a
memory mode for bit-wise computation, or in CAM mode for
search.
Figure 2 illustrates the detail of the MPIM memory block. It
is based on crossbar memristor devices, since they are high
density and cost-effective replacement of main memory [29].
The crossbar memristor is optimized to provide efficient read
and write operations so that its performance is comparable to
DRAM [30]. The area is optimized by using 3D crossbar
memristive devices, which are implemented on top of
DRAM. The design uses vertical select lines as bit lines for
sensing. Two adjacent cells are used to represent a single
CAM cell, where the match line (ML) is the sense line and
the vertical select lines distribute input signal and its
complementary among all rows. Since a single memristor
device requires 4F2/n, the proposed design has a cell density
of 8F2/n, where F is feature size and n is the number of
vertical layers. The MPIM memory is designed to store non-
write intensive data, e.g., reference data points for machine
learning algorithms, learned weights for neural network and
target graph structures to be traversed, thus minimizing the
endurance issue of NVM technologies (e.g., up to 1012 write
operations reported for memresitor devices [31]). We next
explain how MPIM executes each in-memory operation.

DRAM DIMM MPIM

Core 1 Core 2 Core N

Main Processor

Memory Controller

...

...

Op1

Memory
Op1

Memory
Op1

Memory
MEM/CAM

C×

Register/ Result Key

C
tr

l
R

eg
s

K
ey

 S
to

re
K

ey
 S

to
re

Q
u

er
y

 K
ey

Bank 1

Op1

Memory
Op1

Memory
Op1

Memory
MEM/CAM

C×

Bank 2

Op1

Memory
Op1

Memory
Op1

Memory
MEM/CAM

C×

Op1

Memory
Op1

Memory
Op1

Memory
MEM/CAM

C×

Bank 3 Bank B

MEM/CAM Block

Buffer

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM/Bitwise Sense Amplifier

R
o
w

 D
riv

er

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

N
N

 S
e
n

se
 A

m
p

lifier

MPM

Figure 1. The overview of MPIM architecture.

DRAM DIMM

Barier

_

+

Metal

Metal

Via to sense

amplifier

CAM Cell

ML

SL

M
E

M
 C

el
l

SL

To CAM SA

T
o
 M

E
M

 S
A

3D Layers

Read/write/search operations

Figure 2. MPIM integration into a 3D structure

A. Nearest Neighbor Search

An important functionality that MPIM supports is k nearest
neighbor (k-NN) search which has a broad range of
application domains especially for Big Data applications
[30]. k-NN finds k similar data points whose distances are
minimum in its difference criteria over all data points.
Although this algorithm is normally accelerated with
GPGPUs [32-34], performance is dominated by the cost of
data movement. For example, to search through 1 billion data
points, it takes 150 GFLOP and 500G number of data
movements [35]. Instead our design significantly reduces the
data movement by utilizing processing-in-memory.

B.1. MPIM in Search Mode

Before executing the search operation, the searched data
needs to be stored in MPIM banks. We call the stored data as
reference values. Then, for a given data value called a query,
MPIM searches for the most similar data points through all
banks in parallel based on the hamming distance criteria as
the difference metric [30]. As explained in Section 3.1, each

memory bank has C crossbar memories. In order to enable the
search functionality, crossbar memory is configured as a
CAM. Figure 3 shows a detailed illustration of the CAM. A

CAM block consists of N blocks, each block has m-bit data,
while each row corresponds to the match line (ML). In order
to count the hamming distance for each row without large
peripheral digital circuitry, MPIM exploits an analog sense
amplifier along with a parallel counter and a minimum
detector circuit [36].

After the buffer of each block is activated with the query
value, the search operation is performed serially starting from
the block located in least significant section, e.g. Block 1 in
the figure. First ML precharges to Vdd. The input buffer of

the first block activates in T1 clock cycles and distributes the
input data among all rows through vertical lines
simultaneously. Then, a sense amplifier determines the
number of mismatches in terms of the hamming distance, for
the partial block of each row. In the next cycle, the Controller

activates the second block, e.g. Block 2, in T2 cycles by
activating the input buffer. At the same time, a parallel
counter accumulates the number of mismatches of the

previous cycle, T1, for each row. The search operations
continue until all blocks are covered. Finally, a priority

checker block selects the k rows which have the smallest

hamming distance. Each bank of C CAMs returns C*k NN

values. Thus, all the computed results of all B banks, i.e.,

C*B*k NN values, are merged in the dedicated registers,
which can be accessed by the processor.

R
-r

o
w

Buffer

N
N

 S
electo

r

MLs

P
a
ra

llel C
o
u

n
ter

M
in

im
u

m
 D

e
te

cto
r

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

...

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

...

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

...

MEM/Bitwise Sense Amplifier

R
o
w

 D
r
iv

er

BufferBuffer

Controller

... ...

...... ...

...... ...

...

TN TN-1 T1

...

T
1

T
2

T
N

Clk

TN
Block N Block N-1 Block 1

C
lk

ClK

Figure 3. MPIM circuit for nearest neighbor search operation.

High performance search capability and the design scalability
are the primary advantages of our technique. In contrast to the
existing technique which searches for nearest neighbor data in
linear or logarithmic time [5], our design can perform the
computation using block serial, row parallel approach in
constant time. In addition, the MPIM only needs a single
sense amplifier, counter and comparator for a CAM to handle
all blocks, thus significantly reducing the area overhead
compared to all digital implementation. In the next
subsection, we explain the design of the sense amplifier in
more details.

B.2. Sense amplifier

In order to compute the hamming distance of a block in an
efficient way, we leverage analog timing characteristics of the
memristor device. In our design, a CAM consists of multiple
memory cells where each row is connected to a ML. Any
mismatch on the CAM cells start discharging ML. As the
number of mismatches increases, the discharging speed
increases. For example, a CAM line with 2-bit mismatch
discharges significantly faster than CAM with 1-bit hamming
distance. Thus, the sense amplifier can detect the number of
mismatches, as estimated by the hamming distance, by
sampling the ML discharging current every cycle.

However, there is no linear dependency between the ML
discharging speeds and the number of hamming distance bits.
In fact, the discharging speeds saturates as the number of
mismatches increases. For example, in 32-bit CAM, 5 and 6
bits hamming distance have pretty similar ML discharging
time, while there is a large time difference between having 1
and 2 bits hamming distance. This current saturation does not
allow us to identify the hamming difference for the full bit
line size. At the circuit level, the primary reason of this
saturation is limited ML charge. In order to solve the
saturation issue, the proposed design exploits two techniques.
First, we split bit lines into the multiple blocks, i.e., Block 1
to N.

Figure 4 shows the sense amplifier architecture which can
identify difference between 1, 2, 3 and 4 bits hamming
distances. Our design periodically samples the ML

discharging current multiple times to identify the number of
mismatches. In case of any mismatch in the CAM row, the
ML voltage starts discharging and turns the M1 transistor on.
The M1 current is mirrored to the M2 branch. The sampled
current is sent to DMUX which generates 4-bit digital signal
representing the hamming distance (HD). A simple 2-bit wrap
counter is used to keep track of clocks and control the
DMUX output.

To guarantee the correct functionality of the proposed design
in corner cases, we design the CAM and the sense circuitry
by considering 10% of process variations on the transistors,
i.e., the size and threshold voltage, and memristor resistance
values. As explained in Section 3.2.1, the counted hamming
distance is sent to the parallel counter to get a total number of
mismatches for the full bit line size on each row. This parallel
counter is designed to work with the output signals of the
sense amplifier since the DMUX output uses its specified
binary representation.

ML

...
RSense

Cnt VR

Clk

T
d

CAM Cell

VddVdd

HD [m-1:0]

Cnter Rst

1 32 4 1 2

M1 M2

Figure 4. Sense amplifier for nearest neighbor search in MPIM

B. Bitwise Computation

The second key functionality supported by MPIM are bitwise

operations. MPIM has the capability of performing OR, AND,

and XOR operations inside the memory without any

processing cores. In bitwise computation mode, MPIM can

support either the OR/AND operations for multiple memory

rows or the XOR operation for two rows in the same crossbar

memory. Since the proposed technique can perform bitwise

computation as fast as reading data from memory without any

data movement and processing time, the program

performance and energy efficiency can be improved

significantly, especially for large input datasets.

C.1. MPIM in Bitwise Computation Mode & as Memory

In order to compute the bitwise operations, additional sense

amplifiers, called bitwise sense amplifiers, are implemented

at the tail of the bit lines of each crossbar memory. Figure 5

shows the architectural overview of the bitwise sense

amplifier. When the bitwise operation processes two vector

operands, the row driver activates the two corresponded rows

(MLs). Then, a sense amplifier corresponding to each bit

performs the computation based on the discharging current of

the bit line (BL). The current can determine each bit value of

a vector operand. If both memristor devices store a logic ‘1’

which presents as having high resistance, the BL discharging

current is close to zero, say Il. When both bits are ‘0’ due to

their low resistance, a large current, say Ih, is detected. If only

one of the two bits is ‘0’, i.e., one of low resistance and the

other of high resistance, the BL presents a middle range of

current, Im (Il < Im < Ih). Thus, we can identify the bitwise

operation result for a bit based on a voltage-based sense

amplifier circuitry which leverages these current differences.

The current detection in a sense amplifier is performed using

three different sense resistances, RAND, ROR, RMEM. The

resistance, RAND, with large sense resistance detect the

discharging current of Ih. Similarly, another sense resistance,

ROR, can perform the OR operation by identifying when the

discharging current is larger than Im. To support normal

memory read operations, RMEM with low sense resistance is

used to detect any discharging current when a row is activated

by the driver. The XOR operation does not require additional

sense resistance. Instead, this functionality is implemented

based on the results of AND and OR, i.e., M6 and M7

transistors as the following:

XOR= (>1-bit one) AND (<2-bit one).

M2 M1

R>1

RMEM

M3P2
P1

C
u

rr
en

t
M

ir
o
r

M5M6

X
O

R

Vdd

R>0
OR

B
itw

ise

MEM

M4

...

...

ION

IOFF

...

...
...

...

Sense Amplifier

ISL

R
o
w

 D
riv

er
Low Resistance (RON)

High Resistance (ROFF)

OR/AND/XOR

AND

M
em

o
ry

A
N

D

O
R

ML
BL

DMUX

Figure 5. Sense circuitry for memory and bitwise computation.

Table 2. MPIM control signals to support memory and bitwise

computation.

Computing/MEM Modes P1 P2 OR MEM BL ML

Bitwise

Computation

AND 0 1 0 0
Connect

to SA

Active on

selected lines
OR 0 1 1 0

XOR 1 1 1 0

MEM 1 0 0 1
Connect

to SA

Active on

selected line

Table 2 shows the control signals and the ML/BL voltage for
different MPIM operational modes. P1, P2 and MEM control
signals determine the MPIM mode by activating the sense
amplifier corresponding to the AND, OR and memory
operations, respectively. For the XOR operation, MPIM needs
to activate both P1 and P2 signals. These signals also control
the selector of the DMUX block to obtain the target result of
the operation. Note that the delay of the DMUX block is
negligible since the selector bit is activated much sooner than
the actual computation on the sense resistances and
transistors.

C.2. Multi-Row Operation Support

In order to more efficiently handle large datasets, our MPIM
design also support multi-row bitwise operations for AND &
OR by activating multiple memory rows. The processor can
set multiple vector operands of an in-memory bitwise
operation to the memory controller by either selecting the
associated rows separately or assigning a bitmap which
includes the target rows. For OR operation, we can enable the
multi-row operations using the sense amplifier in the same
way as in the two-operand case. For example, the row driver
activates the MLs of the selected rows, then the cells with “1”
value starts leaking to BL due to low resistance. The
discharging currents are collected by the tail sense circuitry,
so we can obtain “1” output of the OR operation whenever
any resistance cell is low among all bits of the selected
multiple rows. However, if many rows are activated, the
result can be inaccurate due to the leakage current of the high
resistance cells. For example, even though all stored values
are ‘0’, the leakage of all the high resistance cells to a bit line
can be as high as the ON current threshold. Thus, the number
of rows which can be supported by an OR operation is
determined by the ratio of ON/OFF current of the memory
cells. When considering 10% process variations on transistor
size and resistance values in 5000 Monte Carlo simulation,
we observed that the number of input vector operands cannot
exceed 256 rows to ensure the correct OR computation.

We do not exploit the same strategy for the AND operation,
since it needs to identify the case when all selected vectors
have low resistance. Thus, instead of using the threshold
voltage, we use the timing characteristic of the BL leakage
current in a similar way used in the design of the hamming
distance detection technique discussed in Section 3.2. For
example, if at least one of the cells in a same BL stores ‘0’,
the BL current discharges faster than the case that all bits are
‘1’. In order to exploit the timing characteristics, we design
sense circuit as shown in Figure 6. It samples the BL current
based on the voltage value of the charged capacitor (VK). The
sampling time is set as the last time when all bits of activated
rows are ‘1’. However, we cannot obtain clear distinction in
timing for a large number of activated rows, since the timing
difference saturates as the number of activated rows increase.
Thus, our design allows the multi-row AND operation for up
to 10 operands which samples in 2.4ns.

M1M2

Vdd

Cm

IBL

+

-

VK
Mr

Clk

Vdd

Vdd

Clk

EnL

Vdd

Clk

Sense Circuitry

Current Miror

Figure 6. The sense circuitry for multi-row AND operation.

IV. Results

A. Experimental Setup

We compare the proposed MPIM architecture with
implementations of applications running on state of the art
processors AMD Radeon R9 390 GPU with 8 GB memory.
In order to avoid the disk communications in the comparison,
all the data used in the experiments is preloaded into 64GB,
2.1GHz DDR4 DIMMs. Power consumption is measured by
Hioki 3334 power meter. We estimated performance, energy
and area overheads of MPIM with Synopsys design compiler,
and for circuit level simulation we use HSPICE with 45-nm
technology.

To compare search operations, we implement k-NN algorithm
which searches the nearest data point in terms of Euclidean
distance using OpenCL [34] and run it on AMD Radeon R9
390. The GPU-based implementation improves the search
performance by parallelizing multiple query requests and data
searches. We use physical activity monitoring data set, named
PAMPA2 [37], which includes 64-bytes data elements with
measured values of 3D accelerometers positioned on arm,
chest and ankle for 8 users. Each data element is labeled with
the actual activity, e.g., sitting and walking. We cross-
validated the accuracy of searched activities for each user by
comparing the actual label of each data point to the label of
the searched data in MPIM. On average 99.48% of hamming
distance-based search operations of MPIM find the same data
labels as GPU-based k-NN algorithm over all users.

To evaluate bitwise computation, we use micro benchmark
which performs vector processing procedures based on
SIMD. We use randomly generated dataset and the data
access pattern does affect the performance. Thus, we tested
MPIM efficiency with sequential and random access cases. In
the sequential access case, since the CPU can exploit data
locality, it has higher performance and energy efficiency. In
contrast, the random access case shows the impact of the
limited cache and memory bandwidth on conventional
processor-memory architectures.

B. Dataset Size

The number of banks, B, and the number of CAMs in each

bank, C are configurable. These are main factors which affect
MPIM overhead in terms of energy and performance. The
overhead is due to the large buffer size that it requires in
CAM mode to distribute the data to all rows. In our design,
we use 1024 banks and 256 CAMs where each CAM stores
5KBytes, so that the simulated MPIM can store and load
1GBytes of data which can cover the largest size of PAMPA2
dataset.

Figure 8 shows the energy consumption and performance
comparison of search operations running on two platforms,
the GPU and the proposed MPIM. The algorithm searches the
nearest data points for 16K queries for various data sizes
from 16MB to 1GB. Our evaluation shows that the MPIM

achieves 5.5x energy saving and 19x performance
improvement as compared to the GPU-based k-NN approach.
For large datasets size >1GB, the energy and performance of

the proposed MPIM is expected to further improve. The
results show that data size affects. The proposed MPIM does
not significantly degrade the energy and performance over the
input dataset increase since this reduces the overhead of the
data movement.

Figure 7. Energy consumption and performance of MPIM and GPU-
based k-NN using different dataset sizes.

Figure 8. Energy consumption and performance of MPIM and GPU-
based k-NN for multiple query processing.

Figure 9 shows the energy and performance comparison of
the two approaches while varying the number of queries from
128 to 32K for the 512MB dataset. Even though the GPU-
based computation can parallelize multiple queries as well,
the performance and energy efficiency still decreases
significantly due to memory overhead. In contrast, based on
high performance of the search operation for the single query,
our design can perform better even in the sequential searches
of multiple queries.

C. MPIM bitwise computation

We next study the vector processing applications to show
benefits of bit-level processing in MPIM. Since the bit size
of a vector, vector length, is one factor which affects
efficiency, we first show results for various lengths. Figure 10
shows the improvement in energy and speedup of MPIM
computation over the GPU-based SIMD architecture. The x-
axis shows the length of vector. The result shows that the
proposed MPIM outperforms the GPU-based computation for
both AND & OR operations. In addition, for larger vector
length cases, the improvements are higher, since the CPU
computation needs to compute the vectors of the large length
sequentially by dividing the vector elements. In fact, the
improvement starts saturating starting with 214-bit vector
length, since the vector length is larger than the memory line
size. For the vectors over the length of the memory word-line,
MPIM splits the vectors and process them serially. This fact
can be observed on Figure 10, where slop pf MPIM speed up
reduces in large vectors. However, we observed that the
proposed design can still process the data in a performance
and energy efficient way.

(a) AND Operation (b) OR Operation

Figure 9. Speedup and energy saving of MPIM in OR/AND vector
processing (216 vectors) compared to SIMD

One major advantage of our MIPM design is that we can
handle bitwise computations of multiple rows. As discussed
in 3.3.2, the number of vectors that the MPIM can support
depends on the operator type. For example, the MPIM
supports the multi-row OR operation for up to 256 rows,
while the AND operation is limited to 10 rows. you should
mention this in intro paragraph to results section Table 3
compares the speed up and energy savings of MPIM with
state-of-the-art PIM techniques in DRAM (DRAM-PIM [16])
and NVM (Pinatubo [17]) using 216 vectors of 214-bit length.
We compare the results for two different cases, where the
data processing happens in sequential or random access
cases. The results show that MPIM achieves significantly
higher efficiency as compared to Pinatubo and DRAM-PIM.
For example, in the AND operation comparison, the proposed

design can improve speedup and energy consumption by 7.1x

and 1.9x compared to Pinatubo [17], since we can also
support the multi-row computations which the other
technique does not support. In addition, we increase the
supported number of rows for OR operations by 256 rows,

which is 2x higher than the Pinatubo. As a result, the MPIM
shows the improvement on speedup and energy consumption

of 1.2x and 1.6x.

Table 3. Speedup and energy savings of MPIM as compared to
Pinatubo [17] and DRAM-PIM [16]

 AND OR

vectors Sequential Random Sequential Random

MPIM
Energy 1.1*104 2.1*104 3.8*104 5.0*104

Speedup 121.6 154.4 2.4*103 3.3*103

Pinatubo
Energy 0.6*103 1.1*103 2.9*104 4.1*104

Speedup 18.1 21.3 1.3*103 2.0*103

DRAM-PIM
Energy 0.2*103 0.5*103 0.2*103 0.5*103

Speedup 4.9 8.3 4.9 8.3

D. Area Overhead

We evaluate the area overhead of the proposed MPIM with
Synopsys Design Compiler to estimate the area of the
peripheral circuitries, and NVsim simulator [38] to estimate
the area of NVM memory. As shown in Figure 11, the area
evaluation shows that the area overhead of MPIM is less than
5.1% over the entire area of MPIM which includes
conventional NVM memory. MPIM peripheral circuitry
requires 4.5% of the area for the search-based peripheral
circuitry (comparator and counter) and 0.6% for the bitwise
sense circuitry.

Figure 10. Area overhead breakdown of MPIM.

V. Conclusion

In this paper we propose multi-purpose in-memory processing
design, MPIM. Our design uses crossbar resistive memory
implemented in a 3D structure on top of conventional
DRAM. MPIM handles several key operations including k
nearest neighbor search and bitwise computation, in addition
to acting as a normal NVM memory. Our experimental
evaluation shows that the proposed MPIM improves the

energy efficiency of the search operation by up to 5.5x and
has a 19x of speed up as compared to the GPU-based
measurements. When running bitwise operations, our design

can achieve by at least 11000x energy saving and 62x
speedup as compared to the state-of-art SIMD. We also show
that our design also outperforms existing state-of-the-art in-

memory processing techniques by 1.8x and 6.7x in terms of
the energy and performance respectively. The total area
overhead of MPIM is minimal.

Acknowledgements
This work was supported by NSF grant #1527034 and Jacobs
School of Engineering UCSD Powell Fellowship.

References

[1] J. Gubbi, et al., "Internet of Things (IoT): A vision, architectural elements,
and future directions," Future Generation Computer Systems, vol. 29, pp. 1645-
1660, 2013.

[2] B. D. Rouhani, et al., "Automated Analysis of Streaming Big and Dense Data
on Reconfigurable Platforms," ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 2016.

[3] B. D. Rouhani, et al., "SSketch: An automated framework for streaming
sketch-based analysis of big data on fpga," in IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 187-194, 2015.

[4] K. Hwang, et al., Distributed and cloud computing: from parallel processing
to the internet of things: Morgan Kaufmann, 2013.

[5] C. C. del Mundo, et al., "NCAM: Near-Data Processing for Nearest Neighbor
Search," in Proceedings of the International Symposium on Memory Systems,
pp. 274-275, 2015.

[6] S. Beamer, et al., "Direction-optimizing breadth-first search," Scientific
Programming, vol. 21, pp. 137-148, 2013.

[7] M. Imani, et al., "State-Feedback Control of Partially-Observed Boolean
Dynamical Systems Using RNA-Seq Time Series Data." American Control
Conference, 2016.

[8] M. Imani, et al., "Optimal state estimation for boolean dynamical systems
using a boolean Kalman smoother," in IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pp. 972-976, 2015.

[9] R. Balasubramonian, et al., "Near-data processing: Insights from a MICRO-
46 Workshop," Micro, IEEE, vol. 34, pp. 36-42, 2014.

[10] G. Loh, et al., "A processing in memory taxonomy and a case for studying
fixed-function pim," in Workshop on Near-Data Processing (WoNDP), 2013.

[11] Q. Guo, et al., "A resistive TCAM accelerator for data-intensive
computing," in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 339-350, 2011.

[12] M. Imani, et al., "Approximate Computing using Multiple-Access Single-
Charge Associative Memory," IEEE Transactions on Emerging Topics in
Computing (TETC), 2016.

[13] R. J. Gerrig, "The scope of memory-based processing," Discourse Processes,
vol. 39, pp. 225-242, 2005.

[14] R. Nair, et al., "Active Memory Cube: A processing-in-memory architecture
for exascale systems," IBM Journal of Research and Development, vol. 59, pp.
17: 1-17: 14, 2015.

[15] Y. Wang, et al., "ProPRAM: exploiting the transparent logic resources in
non-volatile memory for near data computing," in Proceedings of the 52nd
Annual Design Automation Conference, 2015, p. 47.

[16] V. Seshadri, et al., "Fast Bulk Bitwise AND and OR in DRAM," 2015.

[17] S. Li, et al., "Pinatubo: a processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories," in Proceedings of the 53rd
Annual Design Automation Conference, p. 173, 2016.

[18] S. H. Pugsley, et al., "NDC: Analyzing the impact of 3D-stacked memory+
logic devices on MapReduce workloads," in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, 2014, pp. 190-
200.

[19] Q. Guo, et al., "Ac-dimm: associative computing with stt-mram," in ACM
SIGARCH Computer Architecture News, 2013, pp. 189-200.

[20] J. Ahn, et al., "PIM-enabled instructions: a low-overhead, locality-aware
processing-in-memory architecture," in Proceedings of the 42nd Annual
International Symposium on Computer Architecture, 2015, pp. 336-348.

[21] M. Imani, et al., "MASC: Ultra-low energy multiple-access single-charge
TCAM for approximate computing," in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, pp. 373-378.

[22] M. Imani, et al., "A low-power hybrid magnetic cache architecture
exploiting narrow-width values," in 5th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), pp. 1-6, 2016.

[23] N. Khoshavi, et al., "Bit-Upset Vulnerability Factor for eDRAM Last Level
Cache Immunity Analysis," in 17th International Symposium on Quality
Electronic Design (ISQED), pp. 6-11, 2016.

[24] M. Imani, et al., "Low power data-aware STT-RAM based hybrid cache
architecture," in 17th International Symposium on Quality Electronic Design
(ISQED), 2016, pp. 88-94, 2016.

[25] M. V. Beigi, G. Memik, "TESLA: Using Microfluidics to Thermally
Stabilize 3D Stacked STT-RAM Caches," IEEE International Conference on
Computer Design, 2016.

[26] M. V. Beigi. G. Memik, "TAPAS: Temperature-aware Adaptive Placement
for 3D Stacked Hybrid Caches," international Symposium on Memory Systems,
2016.

[27] Y. Kim, et al., "CAUSE: critical application usage-aware memory system
using non-volatile memory for mobile devices," Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 690-696,
2015.

[28] M. Imani, et al., "Resistive Configurable Associative Memory for
Approximate Computing." in Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 373-378, 2016.

[29] C. Xu, et al., "Overcoming the challenges of crossbar resistive memory
architectures," in International IEEE Symposium on High Performance Computer
Architecture (HPCA), pp. 476-488, 2015.

[30] Y. Gong, et al., "Iterative quantization: A procrustean approach to learning
binary codes," in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 817-824, 2011.

[31] M.-J. Lee, et al., "A fast, high-endurance and scalable non-volatile memory
device made from asymmetric Ta2O5− x/TaO2− x bilayer structures," Nature
materials, vol. 10, pp. 625-630, 2011.

[32] H. Jégou, et al., "Searching with quantization: approximate nearest neighbor
search using short codes and distance estimators," 2009.

[33] D. Qiu, et al., "GPU-accelerated nearest neighbor search for 3D
registration," in Computer Vision Systems, ed: Springer, pp. 194-203, 2009.

[34] V. Garcia, et al., "K-nearest neighbor search: Fast GPU-based
implementations and application to high-dimensional feature matching," in 17th
IEEE International Conference on Image Processing (ICIP), pp. 3757-3760,
2010.

[35] Y. Deng, et al., "Content-based search of video using color, texture, and
motion," in International Conference on Image Processing, pp. 534-537, 1997.

[36] L. G. Amaru, et al., "High speed architectures for finding the first two
maximum/minimum values," IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, pp. 2342-2346, 2012.

[37] A. Reiss, et al., "Creating and benchmarking a new dataset for physical
activity monitoring," in Proceedings of the 5th International Conference on
PErvasive Technologies Related to Assistive Environments, p. 40, 2012.

[38] X. Dong, et al., "Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory," Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 31, pp. 994-1007, 2012.

