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Abstract - Running Internet of Things applications on general 

purpose processors results in a large energy and performance 

overhead, due to the high cost of data movement. Processing in-

memory is a promising solution to reduce the data movement 

cost by processing the data locally inside the memory. In this 

paper, we design a Multi-Purpose In-Memory Processing 

(MPIM) system, which can be used as main memory and for 

processing. MPIM consists of multiple crossbar memories with 

the capability of efficient in-memory computations. Instead of 

transferring the large dataset to the processors, MPIM provides 

two important in-memory processing capabilities: i) data 

searching for the nearest neighbor ii) bitwise operations 

including OR, AND and XOR with small analog sense amplifiers. 

The experimental results show that the MPIM can achieve up to 

5.5x energy savings and 19x speedup for the search operations as 

compared to AMD GPU-based implementation. For bitwise 

vector processing, we present 11000x energy improvements with 

62x speedup over the SIMD-based computation, while 

outperforming other state-of-the-art in-memory processing 

techniques.  

 

I. Introduction 

Internet of Things (IoT) designs are moving toward more 
data-driven and autonomous information retrieving solutions. 
The rate of data generation and the size of application 
datasets are anticipated to increase significantly [1-3] . A 
fundamental requirement for efficient IoT hardware designs is 
high performance and energy efficiency for large scale data 
computations.   

There is a large body of research on processor architectures 
for efficient data processing. A popular solution is to leverage 
parallel architectures that mask the computation burden by 
taking advantage of multiple general purpose processors [4]. 
However, even using the massively many core systems 
consisting of CPUs and GPUs, the current system architecture 
cannot efficiently process large datasets. This inefficiency is 
the inevitable consequence of the large amount of data 
movements across the memory hierarchy due to small cache 
capacity and limited memory bandwidth. For example, one of 
the critical operations in IoT applications is fast search 
through a dataset and classification of data via search [5]. 
Other applications for graph processing [6], digital signal 
processing [7], communication [8] perform frequent bitwise 
computations for fetched memory data.  

Processing in-memory (PIM) has been considered as a 
promising solution which could overcome the inefficiency in 
today’s systems [9-12]. Instead of sending a large amount of 
data to the processing units for computation, PIM-based 

memories perform the computation inside the memory, thus 
the application performance can be accelerated by avoiding 
the memory access bottleneck [13].  However, integrating 
memory and logic on same die is not cost effective since high 
density memories and high performance logic require 
different design rules. 3D stacking has recently opened new 
opportunities in this area since memory can easily interact 
with computational logic [14]. However, this technique 
requires massive through-silicon-vias to connect logic to 
multi-layer memory stack [14]. For example, the work 
published in [15],[16] enables memory-based computation 
using large digital peripheral circuitries. 

In this paper, we propose a new resistive memory design, 
called MPIM, which supports multiple in-memory processing 
operations in addition to traditional memory functionality. 
We design a cost-efficient PIM by utilizing analog 
characteristics of emerging non-volatile memory (NVM) 
technology. We address two important requirements to 
process the large amount of data stored in memory rows on 
our high-density crossbar memristor devices integraded in 3D 
on top of DRAM. First, we support a fast search operation to 
find the data of interest. Second, MPIM also supports bitwise 
operations even for multiple operands stored in different 
rows. When MPIM is configured to optimize search, it 
performs row-parallel search based on the timing difference 
of discharging current over the number of mismatched bits. 
For bitwise computation, we exploit an analog sense amplifier 
which can act as an AND, OR, and XOR gate. We 
implemented the proposed MPIM design using HSPICE 
simulator, and compare the energy and performance to recent 
processor architectures and state of the art PIM designs [16, 
17]. Our experimental results show that running k-nearest 
neighbor (k-NN) search operation can improve energy and 

performance by 5.5x and 19x respectively compared to GPU-
based k-NN running on AMD Southern Island GPU. MPIM 

can achieve 11000x energy efficiency improvement and 62x 
speedup for bitwise operations compared to GPU-based 
SIMD machine. We also show that our design also 
outperforms existing state-of-the-art in-memory processing 

techniques [16, 17] by 1.8x and 6.7x in terms of the energy 
and performance respectively. All these advantages are 
achieved with less than 5.1% area overhead compared to 
conventional NVM with just memory support. 

II. Related Work 

Processing in-memory can accelerate computation by 
reducing the overhead of data movement [18-20]. Early PIM 
designs integrate high performance CMOS logic and memory 



on the same die. For example, the associative memory  
performs memory-based computation using content 
addressable memories (CAM) [21]. In CMOS technology, 
CAMs are designed with SRAM cells to provide high 
performance at significant energy cost for each search 
operations. Work in [20] also enables in-memory processing 
for some instruction types without changing the existing 
sequential programing model. The work in [5] designed a 
custom processing unit next to DRAM sense amplifiers to 
support slow row-serial search operation. However, to 
process other computing operations, processor cores are 
added as dedicated building blocks, making the 
manufacturing process complicated and costly. 

The emerging NVM technology such as phase change 
memory, spin-transfer torque magnetic random access 
memory, and resistive RAM are good candidates to design 
memory [22-27], or enable PIM [15, 20, 28] due to its high 
density, low-power consumption, and scalability. For 
example, work in [19] presents a bit-serial TCAM design 
which addresses the limited flexibility of NVM-based 
TCAMs. Work in [17] exploits analog characteristic on 
NVMs to perform bitwise computations with two rows as its 
operands. These techniques perform in-memory computing 
for relatively small data sizes.  One way to handle larger 
datasets is to support scalable computational operations as 
well as search functionality inside the TCAM. Our proposed 
design enables multiple in-memory operations, which are 
designed to process a large amount of data, in addition to 
original memory functionality. For example, the supported in-
memory computations can process bulk OR operations for 
more than 200 rows which is ~2x faster than state-of-the-art 
PIMs.  

III. Multi-Purpose In-Memory Processing 

In this paper, we propose a multi-purpose resistive memory, 
called MPIM. Table 1 summarizes three key functionalities of 
MPIM with their application domains: i) load/store 
operations as an additional memory next to DRAM, ii) 
nearest neighbor search operation and iii) bitwise 
computation. First, as a memory, MPIM is excellent for more 
read intensive data which is often used for in-memory 
computation, while other frequently-updated data can be kept 
in DRAM. Second, MPIM supports a block-serial row 
parallel search operation that can be used as a building block 
for several applications which require this type of search. 
MPIM also supports bulk bitwise computations including OR, 

AND, XOR. This capability allows us to use MPIM to process 
general streaming applications such as multimedia and graph 
processing. 

Table 1. MPIM operations and application examples 

MPIM Operation Applications 

Memory Non-write intensive workloads, keeping reference data 

Bitwise 

computation 

Stream processing, Multimedia, Graph processing, 

Digital signal processing, communication/security 

Nearest neighbor 

search 

Machine learning, Clustering, Statistical 

classifications, Database, Pattern recognition, 

Computer vision, Coding, Data compression    

Figure 1 shows an architecture of the proposed MPIM. It 
consists of multiple memory banks which play a role of both 
memory and processing units. As a memory, MPIM can store 
and load general data.  Stored data can be used for further 
processing. For data which will be used for in-memory 
processing, the main processor can request the data to be 
directly fetched from the hard disk to MPIM instead of 

DRAM. MPIM includes B banks, where each bank contains 

C crossbar memory which can be configured as either a 
memory mode for bit-wise computation, or in CAM mode for 
search. 
Figure 2 illustrates the detail of the MPIM memory block. It 
is based on crossbar memristor devices, since they are high 
density and cost-effective replacement of main memory [29]. 
The crossbar memristor is optimized to provide efficient read 
and write operations so that its performance is comparable to 
DRAM [30]. The area is optimized by using 3D crossbar 
memristive devices, which are implemented on top of 
DRAM. The design uses vertical select lines as bit lines for 
sensing. Two adjacent cells are used to represent a single 
CAM cell, where the match line (ML) is the sense line and 
the vertical select lines distribute input signal and its 
complementary among all rows. Since a single memristor 
device requires 4F2/n, the proposed design has a cell density 
of 8F2/n, where F is feature size and n is the number of 
vertical layers. The MPIM memory is designed to store non-
write intensive data, e.g., reference data points for machine 
learning algorithms, learned weights for neural network and 
target graph structures to be traversed, thus minimizing the 
endurance issue of NVM technologies (e.g., up to 1012 write 
operations reported for memresitor devices [31]). We next 
explain how MPIM executes each in-memory operation.  
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Figure 1. The overview of MPIM architecture.  
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Figure 2. MPIM integration into a 3D structure  

A. Nearest Neighbor Search 

An important functionality that MPIM supports is k nearest 
neighbor (k-NN) search which has a broad range of 
application domains especially for Big Data applications 
[30]. k-NN finds k similar data points whose distances are 
minimum in its difference criteria over all data points. 
Although this algorithm is normally accelerated with 
GPGPUs [32-34],  performance is dominated by the cost of 
data movement. For example, to search through 1 billion data 
points, it takes 150 GFLOP and 500G number of data 
movements [35]. Instead our design significantly reduces the 
data movement by utilizing processing-in-memory. 

B.1. MPIM in Search Mode  

Before executing the search operation, the searched data 
needs to be stored in MPIM banks. We call the stored data as 
reference values. Then, for a given data value called a query, 
MPIM searches for the most similar data points through all 
banks in parallel based on the hamming distance criteria as 
the difference metric [30]. As explained in Section 3.1, each 

memory bank has C crossbar memories. In order to enable the 
search functionality, crossbar memory is configured as a 
CAM. Figure 3 shows a detailed illustration of the CAM. A 

CAM block consists of N blocks, each block has m-bit data, 
while each row corresponds to the match line (ML). In order 
to count the hamming distance for each row without large 
peripheral digital circuitry, MPIM exploits an analog sense 
amplifier along with a parallel counter and a minimum 
detector circuit [36].  

After the buffer of each block is activated with the query 
value, the search operation is performed serially starting from 
the block located in least significant section, e.g. Block 1 in 
the figure. First ML precharges to Vdd. The input buffer of 

the first block activates in T1 clock cycles and distributes the 
input data among all rows through vertical lines 
simultaneously. Then, a sense amplifier determines the 
number of mismatches in terms of the hamming distance, for 
the partial block of each row. In the next cycle, the Controller 

activates the second block, e.g. Block 2, in T2 cycles by 
activating the input buffer. At the same time, a parallel 
counter accumulates the number of mismatches of the 

previous cycle, T1, for each row. The search operations 
continue until all blocks are covered. Finally, a priority 

checker block selects the k rows which have the smallest 

hamming distance. Each bank of C CAMs returns C*k NN 

values. Thus, all the computed results of all B banks, i.e., 

C*B*k NN values, are merged in the dedicated registers, 
which can be accessed by the processor. 
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Figure 3. MPIM circuit for nearest neighbor search operation. 

High performance search capability and the design scalability 
are the primary advantages of our technique. In contrast to the 
existing technique which searches for nearest neighbor data in 
linear or logarithmic time [5], our design can perform the 
computation using block serial, row parallel approach in 
constant time. In addition, the MPIM only needs a single 
sense amplifier, counter and comparator for a CAM to handle 
all blocks, thus significantly reducing the area overhead 
compared to all digital implementation.  In the next 
subsection, we explain the design of the sense amplifier in 
more details. 

B.2. Sense amplifier  

In order to compute the hamming distance of a block in an 
efficient way, we leverage analog timing characteristics of the 
memristor device. In our design, a CAM consists of multiple 
memory cells where each row is connected to a ML. Any 
mismatch on the CAM cells start discharging ML. As the 
number of mismatches increases, the discharging speed 
increases. For example, a CAM line with 2-bit mismatch 
discharges significantly faster than CAM with 1-bit hamming 
distance. Thus, the sense amplifier can detect the number of 
mismatches, as estimated by the hamming distance, by 
sampling the ML discharging current every cycle. 

However, there is no linear dependency between the ML 
discharging speeds and the number of hamming distance bits. 
In fact, the discharging speeds saturates as the number of 
mismatches increases. For example, in 32-bit CAM, 5 and 6 
bits hamming distance have pretty similar ML discharging 
time, while there is a large time difference between having 1 
and 2 bits hamming distance. This current saturation does not 
allow us to identify the hamming difference for the full bit 
line size. At the circuit level, the primary reason of this 
saturation is limited ML charge. In order to solve the 
saturation issue, the proposed design exploits two techniques. 
First, we split bit lines into the multiple blocks, i.e., Block 1 
to N.  

Figure 4 shows the sense amplifier architecture which can 
identify difference between 1, 2, 3 and 4 bits hamming 
distances. Our design periodically samples the ML 



discharging current multiple times to identify the number of 
mismatches. In case of any mismatch in the CAM row, the 
ML voltage starts discharging and turns the M1 transistor on. 
The M1 current is mirrored to the M2 branch. The sampled 
current is sent to DMUX which generates 4-bit digital signal 
representing the hamming distance (HD). A simple 2-bit wrap 
counter is used to keep track of clocks and control the 
DMUX output.  

To guarantee the correct functionality of the proposed design 
in corner cases, we design the CAM and the sense circuitry 
by considering 10% of process variations on the transistors, 
i.e., the size and threshold voltage, and memristor resistance 
values. As explained in Section 3.2.1, the counted hamming 
distance is sent to the parallel counter to get a total number of 
mismatches for the full bit line size on each row. This parallel 
counter is designed to work with the output signals of the 
sense amplifier since the DMUX output uses its specified 
binary representation.  
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Figure 4. Sense amplifier for nearest neighbor search in MPIM 

B. Bitwise Computation 

The second key functionality supported by MPIM are bitwise 

operations. MPIM has the capability of performing OR, AND, 

and XOR operations inside the memory without any 

processing cores. In bitwise computation mode, MPIM can 

support either the OR/AND operations for multiple memory 

rows or the XOR operation for two rows in the same crossbar 

memory. Since the proposed technique can perform bitwise 

computation as fast as reading data from memory without any 

data movement and processing time, the program 

performance and energy efficiency can be improved 

significantly, especially for large input datasets.  

C.1. MPIM in Bitwise Computation Mode & as Memory 

In order to compute the bitwise operations, additional sense 

amplifiers, called bitwise sense amplifiers, are implemented 

at the tail of the bit lines of each crossbar memory. Figure 5 

shows the architectural overview of the bitwise sense 

amplifier. When the bitwise operation processes two vector 

operands, the row driver activates the two corresponded rows 

(MLs). Then, a sense amplifier corresponding to each bit 

performs the computation based on the discharging current of 

the bit line (BL). The current can determine each bit value of 

a vector operand. If both memristor devices store a logic ‘1’ 

which presents as having high resistance, the BL discharging 

current is close to zero, say Il. When both bits are ‘0’ due to 

their low resistance, a large current, say Ih, is detected. If only 

one of the two bits is ‘0’, i.e., one of low resistance and the 

other of high resistance, the BL presents a middle range of 

current, Im (Il < Im < Ih). Thus, we can identify the bitwise 

operation result for a bit based on a voltage-based sense 

amplifier circuitry which leverages these current differences. 

The current detection in a sense amplifier is performed using 

three different sense resistances, RAND, ROR, RMEM. The 

resistance, RAND, with large sense resistance detect the 

discharging current of Ih. Similarly, another sense resistance, 

ROR, can perform the OR operation by identifying when the 

discharging current is larger than Im. To support normal 

memory read operations, RMEM with low sense resistance is 

used to detect any discharging current when a row is activated 

by the driver. The XOR operation does not require additional 

sense resistance. Instead, this functionality is implemented 

based on the results of AND and OR, i.e., M6 and M7 

transistors as the following: 

XOR= (>1-bit one) AND (<2-bit one). 
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Figure 5. Sense circuitry for memory and bitwise computation. 

Table 2. MPIM control signals to support memory and bitwise 

computation.  

Computing/MEM Modes P1 P2 OR MEM BL ML 

Bitwise 

Computation 

AND 0 1 0 0 
Connect  

to SA 

Active on  

selected lines 
OR 0 1 1 0 

XOR 1 1 1 0 

MEM 1 0 0 1 
Connect 

to SA 

Active on  

selected line 

Table 2 shows the control signals and the ML/BL voltage for 
different MPIM operational modes. P1, P2 and MEM control 
signals determine the MPIM mode by activating the sense 
amplifier corresponding to the AND, OR and memory 
operations, respectively. For the XOR operation, MPIM needs 
to activate both P1 and P2 signals. These signals also control 
the selector of the DMUX block to obtain the target result of 
the operation. Note that the delay of the DMUX block is 
negligible since the selector bit is activated much sooner than 
the actual computation on the sense resistances and 
transistors. 



C.2. Multi-Row Operation Support 

In order to more efficiently handle large datasets, our MPIM 
design also support multi-row bitwise operations for AND & 
OR by activating multiple memory rows. The processor can 
set multiple vector operands of an in-memory bitwise 
operation to the memory controller by either selecting the 
associated rows separately or assigning a bitmap which 
includes the target rows. For OR operation, we can enable the 
multi-row operations using the sense amplifier in the same 
way as in the two-operand case. For example, the row driver 
activates the MLs of the selected rows, then the cells with “1” 
value starts leaking to BL due to low resistance. The 
discharging currents are collected by the tail sense circuitry, 
so we can obtain “1” output of the OR operation whenever 
any resistance cell is low among all bits of the selected 
multiple rows. However, if many rows are activated, the 
result can be inaccurate due to the leakage current of the high 
resistance cells. For example, even though all stored values 
are ‘0’, the leakage of all the high resistance cells to a bit line 
can be as high as the ON current threshold. Thus, the number 
of rows which can be supported by an OR operation is 
determined by the ratio of ON/OFF current of the memory 
cells. When considering 10% process variations on transistor 
size and resistance values in 5000 Monte Carlo simulation, 
we observed that the number of input vector operands cannot 
exceed 256 rows to ensure the correct OR computation. 

We do not exploit the same strategy for the AND operation, 
since it needs to identify the case when all selected vectors 
have low resistance. Thus, instead of using the threshold 
voltage, we use the timing characteristic of the BL leakage 
current in a similar way used in the design of the hamming 
distance detection technique discussed in Section 3.2. For 
example, if at least one of the cells in a same BL stores ‘0’, 
the BL current discharges faster than the case that all bits are 
‘1’. In order to exploit the timing characteristics, we design 
sense circuit as shown in Figure 6. It samples the BL current 
based on the voltage value of the charged capacitor (VK). The 
sampling time is set as the last time when all bits of activated 
rows are ‘1’. However, we cannot obtain clear distinction in 
timing for a large number of activated rows, since the timing 
difference saturates as the number of activated rows increase. 
Thus, our design allows the multi-row AND operation for up 
to 10 operands which samples in 2.4ns. 
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Figure 6. The sense circuitry for multi-row AND operation. 

IV. Results 

A. Experimental Setup 

We compare the proposed MPIM architecture with 
implementations of applications running on state of the art 
processors AMD Radeon R9 390 GPU with 8 GB memory. 
In order to avoid the disk communications in the comparison, 
all the data used in the experiments is preloaded into 64GB, 
2.1GHz DDR4 DIMMs. Power consumption is measured by 
Hioki 3334 power meter. We estimated performance, energy 
and area overheads of MPIM with Synopsys design compiler, 
and for circuit level simulation we use HSPICE with 45-nm 
technology.    

To compare search operations, we implement k-NN algorithm 
which searches the nearest data point in terms of Euclidean 
distance using OpenCL [34] and run it on AMD Radeon R9 
390. The GPU-based implementation improves the search 
performance by parallelizing multiple query requests and data 
searches. We use physical activity monitoring data set, named 
PAMPA2 [37], which includes 64-bytes data elements with 
measured values of 3D accelerometers positioned on arm, 
chest and ankle for 8 users. Each data element is labeled with 
the actual activity, e.g., sitting and walking. We cross-
validated the accuracy of searched activities for each user by 
comparing the actual label of each data point to the label of 
the searched data in MPIM. On average 99.48% of hamming 
distance-based search operations of MPIM find the same data 
labels as GPU-based k-NN algorithm over all users.  

To evaluate bitwise computation, we use micro benchmark 
which performs vector processing procedures based on 
SIMD. We use randomly generated dataset and the data 
access pattern does affect the performance. Thus, we tested 
MPIM efficiency with sequential and random access cases. In 
the sequential access case, since the CPU can exploit data 
locality, it has higher performance and energy efficiency. In 
contrast, the random access case shows the impact of the 
limited cache and memory bandwidth on conventional 
processor-memory architectures.  

B. Dataset Size 

The number of banks, B, and the number of CAMs in each 

bank, C are configurable. These are main factors which affect 
MPIM overhead in terms of energy and performance. The 
overhead is due to the large buffer size that it requires in 
CAM mode to distribute the data to all rows. In our design, 
we use 1024 banks and 256 CAMs where each CAM stores 
5KBytes, so that the simulated MPIM can store and load 
1GBytes of data which can cover the largest size of PAMPA2 
dataset. 

Figure 8 shows the energy consumption and performance 
comparison of search operations running on two platforms, 
the GPU and the proposed MPIM. The algorithm searches the 
nearest data points for 16K queries for various data sizes 
from 16MB to 1GB. Our evaluation shows that the MPIM 

achieves 5.5x energy saving and 19x performance 
improvement as compared to the GPU-based k-NN approach. 
For large datasets size >1GB, the energy and performance of 



the proposed MPIM is expected to further improve.  The 
results show that data size affects. The proposed MPIM does 
not significantly degrade the energy and performance over the 
input dataset increase since this reduces the overhead of the 
data movement.  

 

 

Figure 7. Energy consumption and performance of MPIM and GPU-
based k-NN using different dataset sizes. 

 

  

Figure 8. Energy consumption and performance of MPIM and GPU-
based k-NN for multiple query processing. 

Figure 9 shows the energy and performance comparison of 
the two approaches while varying the number of queries from 
128 to 32K for the 512MB dataset. Even though the GPU-
based computation can parallelize multiple queries as well, 
the performance and energy efficiency still decreases 
significantly due to memory overhead. In contrast, based on 
high performance of the search operation for the single query, 
our design can perform better even in the sequential searches 
of multiple queries. 

C. MPIM bitwise computation 

We next study the vector processing applications to show 
benefits of bit-level processing in MPIM.  Since the bit size 
of a vector, vector length, is one factor which affects 
efficiency, we first show results for various lengths. Figure 10 
shows the improvement in energy and speedup of MPIM 
computation over the GPU-based SIMD architecture. The x-
axis shows the length of vector. The result shows that the 
proposed MPIM outperforms the GPU-based computation for 
both AND & OR operations. In addition, for larger vector 
length cases, the improvements are higher, since the CPU 
computation needs to compute the vectors of the large length 
sequentially by dividing the vector elements. In fact, the 
improvement starts saturating starting with 214-bit vector 
length, since the vector length is larger than the memory line 
size. For the vectors over the length of the memory word-line, 
MPIM splits the vectors and process them serially. This fact 
can be observed on Figure 10, where slop pf MPIM speed up 
reduces in large vectors. However, we observed that the 
proposed design can still process the data in a performance 
and energy efficient way.  

 

  

(a) AND Operation     (b) OR Operation 

Figure 9. Speedup and energy saving of MPIM in OR/AND vector 
processing (216 vectors) compared to SIMD  

One major advantage of our MIPM design is that we can 
handle bitwise computations of multiple rows. As discussed 
in 3.3.2, the number of vectors that the MPIM can support 
depends on the operator type. For example, the MPIM 
supports the multi-row OR operation for up to 256 rows, 
while the AND operation is limited to 10 rows. you should 
mention this in intro paragraph to results section Table 3 
compares the speed up and energy savings of MPIM with 
state-of-the-art PIM techniques in DRAM (DRAM-PIM [16]) 
and NVM (Pinatubo [17]) using 216 vectors of 214-bit length. 
We compare the results for two different cases, where the 
data processing happens in sequential or random access 
cases. The results show that MPIM achieves significantly 
higher efficiency as compared to Pinatubo and DRAM-PIM. 
For example, in the AND operation comparison, the proposed 

design can improve speedup and energy consumption by 7.1x 

and 1.9x compared to Pinatubo [17], since we can also 
support the multi-row computations which the other 
technique does not support. In addition, we increase the 
supported number of rows for OR operations by 256 rows, 

which is 2x higher than the Pinatubo. As a result, the MPIM 
shows the improvement on speedup and energy consumption 

of 1.2x and 1.6x. 

Table 3. Speedup and energy savings of MPIM as compared to 
Pinatubo [17] and DRAM-PIM [16]  

 AND OR 

# vectors Sequential Random Sequential Random 

MPIM 
Energy 1.1*104 2.1*104 3.8*104 5.0*104 

Speedup 121.6 154.4 2.4*103 3.3*103 

Pinatubo 
Energy 0.6*103 1.1*103 2.9*104 4.1*104 

Speedup 18.1 21.3 1.3*103 2.0*103 

DRAM-PIM 
Energy 0.2*103 0.5*103 0.2*103 0.5*103 

Speedup 4.9 8.3 4.9 8.3 

D. Area Overhead  

We evaluate the area overhead of the proposed MPIM with 
Synopsys Design Compiler to estimate the area of the 
peripheral circuitries, and NVsim simulator [38] to estimate 
the area of NVM memory. As shown in Figure 11, the area 
evaluation shows that the area overhead of MPIM is less than 
5.1% over the entire area of MPIM which includes 
conventional NVM memory. MPIM peripheral circuitry 
requires 4.5% of the area for the search-based peripheral 
circuitry (comparator and counter) and 0.6% for the bitwise 
sense circuitry.   



 

Figure 10. Area overhead breakdown of MPIM. 

V. Conclusion 

In this paper we propose multi-purpose in-memory processing 
design, MPIM.  Our design uses crossbar resistive memory 
implemented in a 3D structure on top of conventional 
DRAM. MPIM handles several key operations including k 
nearest neighbor search and bitwise computation, in addition 
to acting as a normal NVM memory. Our experimental 
evaluation shows that the proposed MPIM improves the 

energy efficiency of the search operation by up to 5.5x and 
has a 19x of speed up as compared to the GPU-based 
measurements. When running bitwise operations, our design 

can achieve by at least 11000x energy saving and 62x 
speedup as compared to the state-of-art SIMD. We also show 
that our design also outperforms existing state-of-the-art in-

memory processing techniques by 1.8x and 6.7x in terms of 
the energy and performance respectively.   The total area 
overhead of MPIM is minimal. 
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