
CANNA: Neural Network Acceleration using
Configurable Approximation on GPGPU

Mohsen Imani, Max Masich, Daniel Peroni, Pushen Wang, Tajana Rosing
CSE Department, UC San Diego, La Jolla, CA 92093, USA
{moimani, mmasich, dperoni, puw001, tajana}@ucsd.edu

Abstract—Neural networks have been successfully used in
many applications. Due to their computational complexity,it
is difficult to implement them on embedded devices. Neural
networks are inherently approximate and thus can be simplified.
In this paper, CANNA proposes a gradual training approximation
which adaptively sets the level of hardware approximation
depending on the neural network’s internal error, instead of
apply uniform hardware approximation. To accelerate inference,
CANNA’s layer-based approximation approach selectively relaxes
the computation in each layer of neural network, as a function
its sensitivity to approximation. For hardware support, we use
a configurable floating point unit in Hardware that dynamically
identifies inputs which produce the largest approximation error
and process them instead in precise mode. We evaluate the
accuracy and efficiency of our design by integrating configurable
FPUs into AMD’s Southern Island GPU architecture. Our ex-
perimental evaluation shows that CANNA achieves up to 4.84×
(7.13×) energy savings and 3.22× (4.64×) speedup when training
four different neural network applications with 0% (2%) quality
loss as compared to the implementation on baseline GPU. During
the inference phase, our layer-based approach improves the
energy efficiency by 4.42× (6.06×) and results in 2.96× (3.98×)
speedup while ensuring 0% (2%) quality loss.

I. INTRODUCTION

Internet of Things (IoT) applications typically analyze raw
data by running machine learning algorithms [1]. Sending all
the data to the cloud for processing is not scalable, cannot
guarantee real-time response, and is often not desirable due to
privacy and security concerns [2]. Therefore, machine learning
algorithms may need to run, at least partially, on mobile and
embedded devices to classify, cluster, or process the data at
the edge of the Internet.

Neural networks (NNs) are very effective for image pro-
cessing, video segmentation, detection and retrieval, speech
recognition, computer vision, and gaming [3], [4], [5]. NNs
exploit learned knowledge to deal with data which they have
not previously encountered. Although NNs can outperform
many other machine learning models, they require enormous
resources to be executed. Many applications require NNs to be
executed on embedded devices. On the other hand, many NN
applications need to update their model at run-time in order
to adapt to the environment or enable a personalization. For
instance, in speech recognition, NNs personalize as a function
of the user’s context or accent [6]. Due to limited processing
resources and power budgets, training and testing NNs has not
been done on constrained embedded devices.

Most current computing systems deliver only exact solutions
at high energy cost, while many algorithms, such as neural
networks, do not require exact answers, due to their statistical

nature [7], [8], [9]. Slight inaccuracy due to enabled HW
approximation in neural networks often results in little to no
quality loss. Prior work attempted to accelerate neural network
by enabling approximation [10], [11]. These prior designs are
application specific, as the hardware could not adapt the level
of approximation at run-time. Moreover, these designs enable
approximation on all input data regardless of their sensitivity
to approximation, potentially yielding less accurate overall
results that might be possible otherwise.

In this paper, we propose CANNA, a configurable ap-
proximate computing platform which significantly accelerates
neural networks in both training and inference phases by
exploiting their stochastic behavior. For training, we propose
a Gradual Training Approximation (GTA) which significantly
accelerates neural network computation, while providing a
desirable quality of service. GTA starts training from deep
approximation, and gradually reduces the level of approxima-
tion as a function of NN internal error, until the accuracy is
sufficient. For inference acceleration, we propose a layer-based
approximation which selectively relaxes the computation in
each layer of the neural network, based on their impact on
accuracy. We use a hardware configurable floating point unit
(FPU) which can tune the level of approximation at runtime.
We evaluate the accuracy and the efficiency of our design by
integrating configurable FPUs into AMD’s Southern Island
GPU architecture. Our experimental evaluation shows that
GTA achieves up to 4.84× (7.13×) energy savings and 3.22×
(4.64×) speedup when running four different neural network
applications with 0% (2%) quality loss as compared to baseline
GPU. During the inference phase, our layer-based approach
improves the energy efficiency by 4.42× (6.06×) and results
in 2.96× (3.98×) speedup while ensuring 0% (2%) quality
loss.

We evaluate the accuracy and efficiency of our design by
integrating configurable FPUs into AMD’s Southern Island
GPU architecture. Our experimental evaluation shows that
GTA achieves up to 4.84× (7.13×) energy savings and 3.22×
(4.64×) speedup when running four different neural network
applications with 0% (2%) quality loss as compared to the
implementation on baseline GPU. During the inference phase,
our layer-based approach improves the energy efficiency by
4.42× (6.06×) and results in 2.96× (3.98×) speedup while
ensuring 0% (2%) quality loss.

II. RELATED WORK

Neural networks can be adapted to run on a wide variety
of hardware, including: CPU, GPGPU, FPGA, and ASIC

chips [9], [12], [11], [13], [14]. Because they benefit from par-
allelization, a significant effort has been dedicated to utilizing
multiple cores. On GPGPUs, neural networks get up to two
orders of magnitude performance improvement as compared
to CPU implementations [15].

Prior works attempted to leverage the stochastic properties
of neural networks in order to relax the computation accuracy
and improve the implementation efficiency [7], [11], [16], [17].
As shown in [16], implementing neural networks in fixed-point
quantized numbers improves performance. Similarly, Lin et
al.[10] also examined the use of trained binary parameters
in order to avoid multiplication altogether. However, not all
applications can handle this approach. Modifications of neural
networks parameters during training require higher precision
and have difficulties with additive quantization noise [18].
Unlike these works, our design allows the use of full floating
point precision, giving it more flexibility when needed.

Han et al. [19], [20] investigated the use of model compres-
sion in NNs. They trained sparse models with shared weights
to compress the modelet al. [19]. The compressed parameters
of [19] are used to design ASIC/FPGA accelerators [20].
Compression fails to improve the implementation in general
purpose processors, which require the compressed parameters
to be decompressed into the original parameters. Our method
is orthogonal to all this previous work, as our design can
further reduce power consumption and execution time by
enabling gradual and adaptive approximation. In addition, our
proposed design uses a general hardware-software platform
which accelerates neural network on CPU, GPU, FPGA, and
even ASIC, by enabling configurable FPU approximation.

Approximate Computing: There are several approaches
to enable approximation in computing: Voltage over scaling
(VOS), the use of approximate hardware blocks, and approxi-
mate memory units [21], [22], [23]. VOS dynamically reduces
the voltage supplied to hardware to save energy, at the expense
of accuracy [24], [25], [26], [27]. Error rates for VOS can
be modeled to determine the trade-off between energy and
accuracy for different applications, allowing voltage to be
lowered until an error threshold is reached [28], [29], [25],
[30]. However, circuits are sensitive to variations, and if the
operating voltage of a circuit is decreased too far, timing
errors, which may be too large to correct, begin to appear.
Approximate hardware involves redesigning basic component
blocks to save energy, at the cost of output accuracy [21],
[7], [31], [32]. Liu et al. utilizes approximate adders to create
an energy efficient approximate multiplier [7]. Hashemi et al.
designed a multiplier that multiplies with a reduced number of
bits to conserve power [21]. Camus et al. propose a speculative
approximate multiplier that combines gate-level pruning and
an inexact speculative adder to lower both the power con-
sumption and FPU area [31]. Approximation is another way
to improve the efficiency in-memory computation [33], [34].
Prior designs work at a fixed level of accuracy, whereas
we use configurable and adaptive approximate floating point
multiplier which can approximately and adaptively process
data at run-time.

SA SB ExpA ExpB

MUX

X X X X XX XX X X X

Exponential MantissaSign

Ai bit

Tu
n

in
g

b
it

s

FracBFracA

Fig. 1. Configurable approximate multiplication between A ad B operands.

III. APPROXIMATE FLOATING POINT UNIT

In a floating point operation, the mantissa multiplication
takes the bulk of the processing power and energy consump-
tion. work in [32] improves the characteristics of the FPU by
completely removing the costly mantissa multiply. As shown
in Figure 1, rather than multiplying the two values together,
this work selects one of the original mantissa values and use it
directly as the output. Because the range of the mantissa is 1 to
2, the maximum possible error on the output on this approach
is 100%. However, we can easily reduce the maximum error
to 50% by utilizing the first bit of the discarded mantissa and
adding it to the exponent value of the product. When the first
bit of the mantissa is 1, the mantissa value ranges between 1.5
and 2. In this case, by incrementing the exponent, the mantissa
is effectively halved, with a range from 0.75 to 1. When the
first bit of the mantissa is 0, the range is from 1 to 1.5. By
utilizing the first bit of the mantissa, the range of the mantissa
values goes from 0.75 to 1.5, with a maximum error of 50%.

We also reduce the error by adaptively selecting when
multiply is calculated by the FPU at runtime. The threshold
value that selects when exact computation is need is defined
with a number of bits, n, where each additional bit that is
evaluated reduces the maximum approximate error by half.
When we used the first mantissa bit for approximation, the
error increases the closer the mantissa is to 1.5, which is
represented by a 1 followed by all 0s when stored in memory.
Therefore, when the first bit is a 0, we examine the next n bits
for a 1 and discard the approximate answer if a 1 appears.
Likewise, if the first bit is a 1, we examine the next n bits
for a 0 and discard the approximate answer should a 0 be
found. When a value is discarded, the FPU will run in exact
mode and compute the value. By discarding the approximate
values with the greatest error, the majority of calculations
can be run in approximate mode, while a smaller percentage
still runs exactly, resulting in a significantly reduced overall
error. This approach minimizes error while still maintaining
a large energy improvement. Our design provides drastic
improvements to the GPU, because the FPUs are the slowest
component of the GPU architecture and consume the most
energy during computation.

We integrate the approximate FPU design into the existing
AMD Southern Island GPU architecture by modifying its
implementations [32]. The GPU architecture consists of 32
computing units, each with four SIMD (single instruction,
multiple data). Each SIMD consists of 16 lanes, and has both

Xn

W1

X1

Wn

=

Weights

Inputs

Accomulator

b (Bias)

1

n

i i

i

W X b

Input

Hidden 1

Output

Hidden 2

Weight

Matrix

In
p

u
t

D
a
ta

O
u

tp
u

t
D

a
ta

(a)

(b)

(c)

Fig. 2. (a) Neural network structure with two hidden layers, (b) computing
model of each neuron and (c) matrix multiplication representation between
two NN layers.

integer and floating point units. We replace the multiplication
FPU in all GPU cores with our configurable FPUs. Our
approximate FPUs run in approximate mode when the error
is sufficiently low and otherwise calculated results exactly to
maximize the overall accuracy.

IV. NEURAL NETWORK ACCELERATION

A. Neural Network in Training & Inference
Figure 2a shows the overall structure of a neural network

consisting of input, output and hidden layers. The input data
dimension and the number of output classes determines the
number of neurons in the input and output layers respectively.
The number and size of hidden layers depends on the network
topology. As Figure 2b shows, in neural networks, each neuron
is a small processing unit with one or more inputs and a
single output. Each input has an associated weight determining
the strength of the input data. The neuron simply multiplies
inputs with their weights and adds them to calculate an output.
Finally, the output value passes through an activation function,
which is historically a Sigmoid function. Neural networks
have training and testing phases. During the first training
iterations, weights and biases are assigned random values.
The training phase finds the best weight values which result
in maximum classification accuracy. To find such weights,
input data (from the training dataset) passes to the network
in a feed forward fashion. Based on the errors measured at
the output stage, the network adapts the weights and biases
values in back propagation mode. When the network is trained,
the trained weights and biases can be used to classify the
inputs in he dataset. Two fully connected neural network
layers have a huge number of multiplications between them.
Figure 2c shows that these operations can be modeled as
matrix multiplication, where each row of the matrix represents
the weights corresponding to each neuron. The output of each
neuron can be computed as:

xi = f (∑
k

W i
k ∗ xi−1

k +bi) (1)

where multiplications exist between the output of neurons in
i− 1th layer and the weight matrix in ith layer, W i, and f is
an activation function. Each layer has its own bias vector, bi.
This vector adds to the output signal of each neuron. In back

Algorithm 1: Gradual Training Approximation (GTA)

1 inputs: NN Parameters, Training Data, Itermax, Apxmin
2 outputs: NN Trained Model
3 Initialize weights and biases to random values
4 Initialize Approx-level
5 for iter = 1 . . . itermax do
6 outiter= feed forward (input)
7 P=error estimation (out)
8 if isConveraged(P) & isApprox(Apxmin) then
9 Break

10 else
11 approx con f igurator(P, iter, itermax, Apxmin)
12 end
13 back propagate(∆W , ∆b, δl)
14 end

propagation, the ith neural network layer has N inputs and M
outputs. The error δ propagates backwards from the output to
update the weights and the bias value. Here is the gradient
descent equation for updating the weight and bias values:

∆W = η [δ �h
′
(W ∗ x+b)]xT (2)

∆b = η [δ �h
′
(W ∗ x+b)] (3)

where x is input to the layer, η is learning rate, and � shows
the element-wise multiplication. After updating the weights
and bias value, delta also needs to be updated using:

δ = (W T
δ)�h

′
(W ∗ x+b) (4)

In Equation 2, the outer product of h
′
(W ∗ x+b) and x is the

main multiplication cost. The input x has higher potential for
bounding rather than h

′
(W ∗ x+ b), since the second term is

determined by the cost function and network parameter. The
term (W ∗ x+ b) is not computed again in back propagation,
as this term was previously calculated in the forward pass and
can be reused. Similar to other machine learning algorithms,
neural networks are stochastic in nature, meaning that they
accept a part of inaccuracy in their computation. The goal of
this paper is to exploit this scholastic behavior to accelerate
both training and inference of a neural network by enabling
configurable approximation.

B. CANNA Acceleration During Training
1) Uniform Training Approximation: It is essential to use

the precision of floating point units (FPU) for neural network
training, as FPUs cover a wide range of numbers appearing
during the back propagation. Training neural networks on
such approximate hardware accelerates the process while
maintaining the desired level of accuracy. The level of approx-
imation is user and application dependent. For example, for
an easy image classification task (e.g. MNIST Handwritten
digits [35]), training on hardware with deep approximation
might provide the same quality of service that hardware with
light approximation can provide over more complex datasets
(e.g. ImageNet [36]). Thus, there is not a fixed optimal
approximation level which is acceptable for all applications.

TrainingHardware

Training

Dataset

Error

Estimator

Approx

Configurator

Core

1

Core

N
Core

2

Apxmin

User

iter

itermax

Approx

δ <THR

THR

Generator
itermax

iter

Apxmin

Yes

No

Approx Configurator

C
la

ss
if

ic
a
ti

o
n

 E
r
r
o
r

(%
)

5

10

15

20

25

30

35

40

200 400 600 800 10000

Training Iterations

50

Hither Approximation

Higher Efficiency

Possible Additive Error

Classification Error

Input

Hidden layers

Output

(a) (b) (c)

Fig. 3. (a) MNIST classification accuracy in different training iterations (b,c) GTA framework to accelerate neural network training by enabling Adaptive
approximation.

TABLE I
QUALITY LOSS, NORMALIZED ENERGY CONSUMPTION AND EXECUTION

TIME OF NEURAL NETWORK RUNNING ON GPGPU WITH DIFFERENT
LEVEL OF APPROXIMATION (TUNING BITS).

Approximation Exact 4-bit 3-bit 2-bit 1-bit 0-bit
Quality loss (∆etrain) 0% 0% 0.9% 1.3% 1.7% 3.2%

Norm.Energy 1 0.31 0.25 0.21 0.18 0.12
Norm. Execution 1 0.45 0.38 0.34 0.31 0.19

In order to generalize the existing core so it accelerates
the neural network during the training phase, we use our
approximate configurable FPU. Depending on the running
application and its accuracy needs, our framework changes
the level of hardware approximation to an optimal level.

Table I shows the impact of uniform approximation on the
quality loss, energy consumption, and execution time of a
neural network when evaluating the MNIST Handwritten digit
dataset. This network consists of four fully connected layers
with 784, 500, 500, and 10 neurons in each layer, respectively.
The application classifies handwritten digitsinto ten different
classes, 0–9 . Quality loss is an additive error, defined as the
classification error of neural network training on full precision
and approximate FPUs:

∆etrain = eApprox− eFPU

This result shows that increasing the level of hardware ap-
proximation does not automatically imply a degradation in
classification accuracy. For example, for this network, our
design works with the same accuracy as a full range 32-bit
FPU, even when it trains with only four configuration tuning
bits. At this level of approximation the FPUs are running 33%
of the time in approximate mode (Hit-rate=33%), resulting in
a training speedup of 2.2× and energy efficiency improvement
of 3.2× as compared to the hardware with full FPU precision.
Increasing the level of approximation to no tuning bits further
accelerates the training by 5.1× and results in 7.9× energy
efficiency improvement with 3.2% quality loss.

2) Gradual Training Approximation: Neural network train-
ing accuracy changes during the training phase. During the
first training iteration, the weights are assigned randomly,
resulting in larger classification error. These weights adapt
during the training phase using stochastic gradient decent.
Figure 3a shows the error rate of the MNIST dataset over
1000 training iterations. The red line in this graph illustrates

Algorithm 2: Layer-based Inference Approximation

1 inputs: NN Parameters, Validation Data, Test Data, QoS
2 outputs: NN Layer Configuration
3 Initialize weights and biases based on trained model
4 for i = 1 . . .N do
5 config(i)=approx[(l1 . . . li−1, li+1 . . . ln)=Apx0,

li = Apxmax]
6 outi= feed forward (validation-data, config(i))
7 Ci=error estimation (outi)
8 end
9 for Apx(j) = Apxmax . . .Apxmin do

10 S j=selective approx(Ci, Apx(j))
11 out j= feed forward (test-data, S j)
12 E j=error estimation (out j)
13 if (QoS ¿ E j) then
14 save config(S j)
15 Break
16 end
17 end

the visual range of approximation that a network can accept
during the training. The error reduces significantly during
early training iterations, but then saturates. Different error
rates while training suggests that uniform approximation is
not the best method for approximation because all training
iterations do not have the same impact on the final network
classification accuracy. During the first iterations, the weights
are fairly random, so accepting large approximation should
not impact the final classification accuracy. However, during
the last iterations, the weights are clsoe to optimal, thus even
small hardware approximation may degrade the classification
accuracy noticeably.

We propose a gradual training approximation framework,
called GTA, which accelerates the neural network training. Our
framework, shown in Figure 3b, starts the training from the
hardware with maximum level of approximation (zero tuning
bits). Then, it updates the level of hardware approximation
at each iteration, as the network converges. The convergence
controls when the slope of accuracy improvement is less than
a threshold value, T HR. This T HR value adaptively changes
in our design to ensure that training completes with acceptable
accuracy by the final iteration (itermax). As Figure 3c shows,

Input

Hidden 1

Sensitivity AnalysisGPGPU Configurator

Validation

Dataset

Layer-based

Approximation

Output

Hidden 2

Sensitivity

Analysis

Input

Hidden 1

TestingAdaptive GPGPU Configurator

Testing

Dataset

Output

Hidden 2

Layer Sensitivity Analysis Configurable Test Operation

User

Approx

Configurator

Core

1

Core

N
Core

2

GPGPU

Approx

Configurator

Core

1

Core

N
Core

2

Fig. 4. Framework to accelerate neural network inference by enabling layer-based approximation.

our framework updates the T HR value by using four inputs: (i)
the current training iteration iter, (ii) the maximum number of
iterations (itermax), (iii) neural network error (δ), and (iv) the
maximum hardware precision (Apxmin). Based on the updated
T HR, GTA checks the convergence in each training iteration
by measuring the slope of classification accuracy over last
50 iterations. If the slope is smaller than a T HR value, our
framework reduces the level of approximation by a single step.

Algorithm 1 outlines the details of our gradual training
approximation. The first steps assign the weights and biases
random values and set the hardware approximation to the
maximum level (Apxmax). The iterative training starts by feed
forward (line 6), where input patterns pass through NN and
generate the output class. Our algorithm estimates the network
error (line 7) and checks for the convergence (line 8). If
training converges and the hardware is at the most precise level
(Apxmin, defined by user), the algorithm terminates. Otherwise,
it updates the level of approximation (line 11) and performs
back propagation for the next training iteration (line 13).
This iterative procedure terminates when either the network
converges during the final hardware approximation, or the
iteration reaches the maximum (itermax).

C. Inference Acceleration

Similar to the training phase, the inference phase can be
accelerated by enabling approximation. However, there is no
notion of iterations during testing, as NNs use the same
trained model to classify all inputs of the dataset. Uniform
approximation is one possible technique to apply inference
approximation, which was explored in prior work [7], [11],
[16]. This technique performs inference on the hardware with
a fixed level of approximation. We select the approximation
which provides the desired accuracy during the inference over
the validation set. However, this is not the best approach to
apply approximation, as it does not consider the impact of
individual NN layers. In a neural network, separate layers
have different sensitivity to approximation. For example, the
first NN layer has higher sensitivity, as it directly works
on the input data, thus any approximation can change the
network input. Similarly, the NN classification accuracy has
high dependency on the output layer, as approximation of this
layer can change the output class. The middle neural network
layers show much lower sensitivity to approximation.

Based on this observation and configurability of our hard-
ware, CANNA proposes a layer-based inference approxima-
tion which selects a different approximation level for each
layer depending on their impact on the classification accuracy.
Figure 2 shows the inference framework supporting sensitivity
analysis and layer-based approximation. This framework first
finds the impact of each layer approximation on the final
NN accuracy. Algorithm 2 shows the procedure of layer-
based inference approximation. The approximation consists
of two parts: sensitivity analysis and selective layer-based
approximation. During the sensitivity analysis, the program
iterates through the network layers and puts one layer on
maximum level of approximation (zero tuning bits) at a time,
while each other layer is set to exact mode. In this config-
uration, the feed-forward measures the sensitivity. Analysis
continues for all network layers while running the validation
dataset. The result of this sensitivity analysis is a vector,
C = [C1. . . CN], where each element represents the sensitivity
of one NN layer to approximation. Based on this vector, we
enable selective hardware approximation in each NN layer,
from the maximum level and then decrease it until the network
satisfies quality of service (QoS) defined by user. The last
level of approximation obtained is saved as the best network
configuration. While changing the neuron approximation, the
ratio of layers approximation needs to remain close to the same
as that obtained during the sensitivity analysis. However, since
the approximation is controlled by a number of tuning bits, our
design needs to quantize the sensitivity value to the hardware
with the closest approximation level.

Table II shows the sensitivity of different NN layers for the
MNIST dataset. This result shows that the first and the last
layers have the highest sensitivity to approximation, while the
hidden layers could have up to 3× lower sensitivity. The table
also shows a few possible configurations that NN layers can
take in approximate mode. When the first NN layer works with
m-bit level approximation, the second to last NN layers need to
be configured with m−1, m−2 and m tuning bits respectively.
With m = 6, the network runs 51% of time in approximate
mode and provides 4.4× energy savings and 2.9× speedup,
with zero quality loss compared to the NN runing on exact
hardware. These improvements are respectively 1.6× and 1.8×
higher than running NN with uniform approximation.

The layer-based approximation can be easily implemented

TABLE II
LAYER SENSITIVITY AND HARDWARE CONFIGURATION OF NEURAL

NETWORK OVER MNIST DATASET

Layer 1 Layer 2 Layer 3 Layer 4 ∆etest
Sensitivity 1 0.52 0.34 0.89
Config1 6-bits 5-bits 4-bits 6-bits 0%
Config2 3-bits 2-bits 1-bits 3-bits 0.9%
Config3 2-bits 1-bit 0-bits 2-bits 3.2%

TABLE III
BASELINE NN AND THE TRAINING AND TESTING ERROR OVER FOUR

APPLICATIONS

Application Network Topology etrain(%) etest(%)
(l0, l1, l2, l3)

MNIST 784, 500, 500, 10 0.3 2.4
ISOLET 617, 500, 500, 26 0.7 4.4
HYPER 200, 500, 500, 9 0.9 6.6

HAR 561, 500, 500, 12 0.2 3.4

on multi-core hardware such as GPGPU or FPGA. For a
network with N layers, the GPGPU cores need to assign the
approximation of cores to at most N different levels. The
configuration of all GPGPU cores can be set simultaneously
depending what NN layer is assigned to them.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
We integrate configurable FPUs on the AMD Southern Is-

land GPU, Radeon HD 7970 device, a recent GPU architecture
with 2048 streaming cores. We use multi2sim, a cycle accu-
rate CPU-GPU simulator for architecture simulation [37] and
change the GPU kernel code to enable configurable floating
point unit approximation in runtime simulation. We use Syn-
opsys Design Compiler to calculate the energy consumption of
the balanced FPUs in GPU architecture in 45-nm ASIC flow.
We perform circuit level simulations to design configurable
FPU using HSPICE simulator in 45-nm TSMC technology.
Neural networks are realized using OpenCL, an industry-
standard programming model for heterogeneous computing.
We tested the application of proposed design on four general
neural network applications:Handwritten Image Recognition
(MNIST) [35], Voice Recognition (ISOLET) [38], Hyper-
spectral Imaging (HYPER) [39], Human Activity Recognition
(HAR) [40]. Table III lists the baseline neural network topolo-
gies running four applications and their error rates for train and
test modes. For each of the four data sets, we compare the
baseline accuracy of the train and inference phases with those
when using the proposed CANNA framework. We compare
the designs in terms of run time and power consumption.
Stochastic gradient descent with momentum [41] is used for
training. The momentum is set to 0.1, the learning rate is set to
0.001, and a batch size of 10 is used. Dropout [42] with drop
rate of 0.5 is applied to hidden layers to avoid over-fitting. The
activation functions are set to “Rectified Linear Unit” clamped
at 6. A “Softmax” function is applied to the output layer.

B. Training Accuracy-Efficiency
Here we compare the classification accuracy of different

NN applications training on GPGPU with uniform and GTA

approximation. In uniform mode, the hardware approximation
is fixed during the training mode, while GTA changes the
approximation adaptively depending on the training error
(explained in Section IV-B). Table IV shows the configura-
tion of different applications training on uniform and GTA
approximation, providing 0% to 4% quality loss (∆etrain).
For uniform approximation, the table shows the number of
tuning bits in hardware which provides the desired accuracy.
For GTA, the level approximation is set by defining the final
level of hardware approximation. The table also shows the
approximation hit rate, which is the ratio of running FPUs in
approximate mode to the total accesses, for each configuration.
For instance, for the MNIST application the uniform approx-
imation provides 0% quality loss using 4 tuning bits which
results in a roughly 36% approximation hit rate. For the same
quality of service, GTA adaptively changes the tuning bits
from 0 to 5 bits, resulting in average 70% approximation hit
rate.

Figure 5 shows the energy efficiency improvement and the
speedup of different applications running on GPGPU with
uniform and GTA approximation. The results are normalized
to GPGPU using exact 32-bit FPUs. Our experimental results
shows that at the same level of accuracy, the GTA always
outperforms the efficiency of the uniform approximation. This
higher efficiency of comes from GTA ability to put the GPGPU
in approximate mode for higher portion of time (as compared
to uniform approximation, as shown in Table IV). The result
shows that ensuring 0% additive error, GTA (uniform) design
can achieve 3.86× (2.26×) energy efficiency improvement and
2.62× (1.62×) speedup as compared to exact mode. For GTA
(uniform) design, this improvement increases to 4.84× and
6.11× (2.99% and 4.04%) in energy efficiency and 3.23× and
4.01× (2.07× and 2.37×) in performance accepting 1% and
2% additive errors.

C. Testing Accuracy-Efficiency
Similar to the training, the neural network testing can

also be accelerated on approximate hardware. We adjust the
threshold value to test the efficiency of our design in different
approximation levels. We consider the accuracy that NN can
achieve in test mode when the approximation is applied
uniformly or with a layer-based approach. In uniform approxi-
mation, all layers are approximated at the same accuracy level,
while the layer-based approach sets NN layers’ approximation
based on the results obtained from sensitivity analysis. For
each application, Table V shows the sensitivity of each neural
network layer to approximation for each application (Note that
NNs are trained on exact GPGPU).

Figure 6 shows the energy efficiency improvement and
performance speedup of applications running on uniform and
layer-based approximation when the network is tested on the
hardware configuration listed in Table V. The x-axis shows the
maximum acceptable test error (∆etest) for each application.
The results are normalized to the energy and performance
of traditional GPGPU using 32-bit FPU. The experimental
result shows that the layer-based (uniform) approximation
could achieve 3.27× (1.86×) higher energy efficiency and
2.25× (1.38×) speedup as compared to GPGPU architecture,

TABLE IV
CONFIGURATION OF DIFFERENT NEURAL NETWORKS RUNNING ON GPGPU WITH UNIFORM AND GTA APPROXIMATION, PROVIDING DIFFERENT

QUALITY OF SERVICE.

Applications MNIST ISOLET HYPER HAR
Training Error (∆etrain) 0% 1% 2% 4% 0% 1% 2% 4% 0% 1% 2% 4% 0% 1% 2% 4%

GTA Apxmin 5-bits 4-bits 1-bits 0-bits 7-bits 4-bits 2-bits 1-bit 8-bits 6-bits 5-bits 3-bits 8-bits 6-bits 3-bits 2-bits
Approx Hit Rate 56% 69% 88% 100% 52% 60% 79% 92% 23% 44% 56% 82% 38% 51% 72% 86%

Uniform Tuning bits 4-bits 3-bits 1-bit 0-bits 5-bits 3-bits 2-bits 1-bit 8-bits 5-bits 4-bits 3-bits 6-bits 4-bits 2-bits 1-bit
Approx Hit Rate 33% 42% 54% 100% 29% 38% 51% 83% 6% 14% 27% 37% 11% 26% 47% 66%

0% 1% 2% 4%
0

2

4

6

8

∆e
train

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 I
m

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(a) MNIST

0% 1% 2% 4%
0

2

4

6

8

∆e
train

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 I
m

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(b) ISOLET

0% 1% 2% 4%
0

2

4

6

8

∆e
train

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 I
m

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(c) HYPER

0% 1% 2% 4%
0

2

4

6

8

∆e
train

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 I
m

p
ro

v
e

m
e

n
t

(G
P

U
=

1
)

(d) HAR

0% 1% 2% 4%
0

2

4

6

∆e
train

P
e

rf
o

rm
a

n
c

e
 S

p
e

e
d

u
p

 (
G

P
U

=
1

)

(e) MNIST

0% 1% 2% 4%
0

2

4

6

∆e
train

P
e

rf
o

rm
a

n
c

e
 S

p
e

e
d

u
p

 (
G

P
U

=
1

)

(f) ISOLET

0% 1% 2% 4%
0

2

4

6

∆e
train

P
e

rf
o

rm
a

n
c

e
 S

p
e

e
d

u
p

 (
G

P
U

=
1

)

(g) HYPER

0% 1% 2% 4%
0

2

4

6

∆e
train

P
e

rf
o

rm
a

n
c

e
 S

p
e

e
d

u
p

 (
G

P
U

=
1

)

(h) HAR

Fig. 5. Energy efficiency improvement and speedup of different NN applications training on GPGPU with uniform and GTA approximation.

TABLE V
SENSITIVITY OF EACH NEURAL NETWORK LAYER TO APPROXIMATION

USING LAYER-BASED APPROACH.

Layer 1 Layer 2 Layer 3 Layer 4
MNIST 1 0.52 0.34 0.89
ISOLET 1 0.57 0.65 0.83
HYPER 0.92 0.71 0.59 1

HAR 1 0.48 0.41 0.92

while providing the same accuracy as exact GPGPU. Further
relaxing the GPGPU computation significantly improves the
energy and performance of GPGPU, specially in layer-based
design. For example, accepting 1% (2%) quality loss, layer-
based approximation could improve the energy efficiency and
speedup of the GPGPU by 4.05× and 2.73× (5.25× and
3.48×) respectively.

D. Scalability and Overhead

CANNA is a general framework which can accelerate
several supervised machine learning algorithms which have
iterative training procedure or layer-based inference structure.
CANNA is a scalable design in terms of the neural network
size and supports the approximation on both convolution and
fully connected layers. If the number of neurons surpasses
the number of GPGPU cores, our design sequentially runs
the network and configures the cores at run-time accordingly.
Our design is able to reconfigure all cores in a single GPU
cycle with negligible impact on the neural network train-
ing execution. In inference, CANNA sensitivity analysis and

adaptive approximation performs just once at offline over all
applications, which results in a negligible overhead. In terms
of area, our evaluation shows that the proposed configurable
FPU can be designed by adding less than 2.6% area overhead
to the existing FPU. This area is negligible considering 7.13×
energy savings and 4.64× speedup that CANNA can provide.

VI. CONCLUSION

In this paper we propose CANNA, a novel framework
to accelerate neural network computation in both training
and inference modes by enabling configurable approximation.
CANNA supports gradual approximate training which enables
the hardware approximation adaptively based on on the net-
work accuracy. Our framework starts the training from deep
approximation then changes this level adaptively based on the
neural network error rate. For inference, CANNA proposes a
layer-based approach which enables approximation on neural
network layers based on their sensitivity to approximation. Our
experimental evaluation shows that CANNA can achieve up
to 7.13× (6.06×) energy savings and 4.64× (3.98×) speedup
training (testing) of four different neural network applications
with less than 2% quality loss.

VII. ACKNOWLEDGMENT

This work was supported by NSF grants 1730158 and
1527034.

REFERENCES

[1] Y.-K. Chen, “Challenges and opportunities of internet of things,” in
ASPDAC, pp. 383–388, IEEE, 2012.

0% 1% 2% 4%
0

2

4

6

8

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(a) MNIST (Uniform)

0% 1% 2% 4%
0

2

4

6

8

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(b) ISOLET (Uniform)

0% 1% 2% 4%
0

2

4

6

8

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(c) HYPER (Uniform)

0% 1% 2% 4%
0

2

4

6

8

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(d) HAR (Uniform)

0% 1% 2% 4%
0

2

4

6

8

10

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

100

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(e) MNIST (Layer-based)

0% 1% 2% 4%
0

2

4

6

8

10

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

100

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(f) ISOLET (Layer-based)

0% 1% 2% 4%
0

2

4

6

8

10

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

100

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(g) HYPER (Layer-based)

0% 1% 2% 4%
0

2

4

6

8

10

∆e
test

E
n

e
rg

y
 I

m
p

ro
v

.
&

 S
p

e
e

d
u

p

(G
P

U
=

1
)

0

20

40

60

80

100

A
p

p
ro

x
im

a
ti

o
n

 H
it

 R
a

te
 (

%
)

(h) HAR (Layer-based)

Fig. 6. Energy efficiency improvement, speedup and approximation hit rate of different NN applications testing on GPGPU with uniform and layer-based
approximation.

[2] A.-R. Sadeghi et al., “Security and privacy challenges in industrial
internet of things,” in IEEE/ACM DAC, pp. 1–6, IEEE, 2015.

[3] M. Oquab et al., “Learning and transferring mid-level image represen-
tations using convolutional neural networks,” in IEEE CVPR, pp. 1717–
1724, 2014.

[4] M. S. Razlighi et al., “Looknn: Neural network with no multiplication,”
in IEEE DATE, pp. 1775–1780, IEEE, 2017.

[5] M. Imani et al., “Efficient neural network acceleration on gpgpu using
content addressable memory,” in IEEE DATE, pp. 1026–1031, IEEE,
2017.

[6] N. Lane et al., “Can deep learning revolutionize mobile sensing?,” in
HotMobile, pp. 117–122, ACM, 2015.

[7] C. Liu et al., “A low-power, high-performance approximate multiplier
with configurable partial error recovery,” in DATE, p. 95, IEEE, 2014.

[8] C.-H. Lin et al., “High accuracy approximate multiplier with error
correction,” in IEEE ICCD, pp. 33–38, IEEE, 2013.

[9] M. Samragh et al., “Customizing neural networks for efficient fpga
implementation,” in FCCM, pp. 85–92, IEEE, 2017.

[10] Z. Lin et al., “Neural networks with few multiplications,” arXiv preprint
arXiv:1510.03009, 2015.

[11] V. Mrazek et al., “Design of power-efficient approximate multipliers
for approximate artificial neural networks,” in IEEE/ACM ICCAD, p. 7,
2016.

[12] C. Zhang et al., “Caffeine: towards uniformed representation and accel-
eration for deep convolutional neural networks,” in ACM ICCAD, p. 12,
ACM, 2016.

[13] Y. Wang et al., “Deepburning: Automatic generation of fpga-based
learning accelerators for the neural network family,” in IEEE/ACM DAC,
IEEE, 2016.

[14] B. D. Rouhani et al., “Curtail: Characterizing and thwarting adversarial
deep learning,” arXiv preprint arXiv:1709.02538, 2017.

[15] D. C. Ciresan et al., “Flexible, high performance convolutional neural
networks for image classification,” in IJCAI, vol. 22, p. 1237, Barcelona,
Spain, 2011.

[16] D. Lin et al., “Fixed point quantization of deep convolutional networks,”
arXiv preprint arXiv:1511.06393, 2015.

[17] S. Venkataramani et al., “Axnn: energy-efficient neuromorphic systems
using approximate computing,” in ACM/IEEE ISLPED, pp. 27–32,
ACM, 2014.

[18] Lin et al., “Overcoming challenges in fixed point training of deep
convolutional networks,” arXiv preprint arXiv:1607.02241, 2016.

[19] Han et al., “Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding,” CoRR,
abs/1510.00149, vol. 2, 2015.

[20] S. Han et al., “Eie: efficient inference engine on compressed deep neural
network,” arXiv preprint arXiv:1602.01528, 2016.

[21] S. Hashemi et al., “tldrum: A dynamic range unbiased multiplier for
approximate applications,” in ICCAD, pp. 418–425, IEEE Press, 2015.

[22] M. Imani et al., “Exploring hyperdimensional associative memory,” in
IEEE HPCA, pp. 445–456, IEEE, 2017.

[23] S. M. Seyedzadeh, R. Maddah, A. Jones, and R. Melhem, “Leveraging
ecc to mitigate read disturbance, false reads and write faults in stt-
ram,” in Dependable Systems and Networks (DSN), 2016 46th Annual
IEEE/IFIP International Conference on, pp. 215–226, IEEE, 2016.

[24] M. Imani et al., “Resistive configurable associative memory for approx-
imate computing,” in DATE, pp. 1327–1332, IEEE, 2016.

[25] V. Gupta et al., “Impact: imprecise adders for low-power approximate
computing,” in ISLPED, pp. 409–414, IEEE Press, 2011.

[26] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge
tcam for approximate computing,” in DATE, pp. 373–378, IEEE, 2016.

[27] M. Imani, S. Patil, and T. Rosing, “Approximate computing using
multiple-access single-charge associative memory,” IEEE Transactions
on Emerging Topics in Computing, 2016.

[28] P. K. Krause et al., “Adaptive voltage over-scaling for resilient applica-
tions,” in DATE, pp. 1–6, IEEE, 2011.

[29] M. Imani, A. Rahimi, P. Mercati, and T. Rosing, “Multi-stage tunable
approximate search in resistive associative memory,” IEEE Transactions
on Multi-Scale Computing Systems, 2017.

[30] M. Imani et al., “Acam: Approximate computing based on adaptive
associative memory with online learning,” in ISLPED, 2016.

[31] V. Camus et al., “Approximate 32-bit floating-point unit design with
53% power-area product reduction,” in ESSCIRC, pp. 465–468, IEEE,
2016.

[32] M. Imani et al., “Cfpu: Configurable floating point multiplier for energy-
efficient computing,” in IEEE/ACM DAC, p. 76, ACM, 2017.

[33] Y. Kim et al., “Orchard: Visual object recognition accelerator based on
approximate in-memory processing,” in ICCAD, IEEE, 2017.

[34] M. Imani et al., “Ultra-efficient processing in-memory for data intensive
applications,” in IEEE/ACM DAC, p. 6, ACM, 2017.

[35] Y. LeCun et al., “The mnist database of handwritten digits,” 1998.
[36] A. Krizhevsky et al., “Imagenet classification with deep convolutional

neural networks,” in NIPS, pp. 1097–1105, 2012.
[37] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu com-

puting,” in PACT, pp. 335–344, ACM, 2012.
[38] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/

ISOLET.
[39] “Hyperspectral remote sensing scenes.” http://www.ehu.eus/ccwintco/

index.php?title=Hyperspectral Remote Sensing Scenes.
[40] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/

Human+Activity+Recognition+Using+Smartphones.
[41] I. Sutskever et al., “On the importance of initialization and momentum

in deep learning.,” ICML (3), vol. 28, pp. 1139–1147, 2013.
[42] N. Srivastava et al., “Dropout: a simple way to prevent neural networks

from overfitting.,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

