
94 2168-2356/17 © 2017 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

General Interest

Low-Power Sparse
Hyperdimensional
Encoder for Language
Recognition

 Brain-inspired information processing archi-
tectures provide a promising new avenue to improve
energy efficiency, asymptotically approaching the
efficiency of brain computation, while tolerating vari-
ations in nanoscale fabrics [1]. In these architectures,
patterns are used as basic data representation in con-
trast to computing with numbers. Hyperdimensional
(HD) computing [2] captures and imitates this idea
of distributed pattern-based data representations
in the form of hypervectors-high-dimensional ran-
dom vectors with dimensionality in thousands (e.g.,
D = 10,000 bits). HD computing builds upon a well-
defined set of operations with random hypervectors
and offers a complete computational paradigm that
is easily applied to learning problems. Examples

include analogy-based reasoning [3],
sequence memory [4], language recog-
nition [5]–[7], biosignal processing [8],
and prediction from multimodal sensor
fusion [9]. These applications typically
use various encoding operations on
dense hypervectors, where zeros and
ones are equiprobable. These encoding
operations, specifically bitwise XOR and
shift, impose a large amount of switch-
ing activity that results in higher power
consumption.

In this paper, we propose a more biologically
plausible [10], sparse binary representation, and
related low-power encoding operations to pro-
duce and maintain sparse hypervectors where the
number of ones is significantly less than zeros. The
representation and encoding operations effectively
control and reduce the large switching activity
and power consumption of prior HD designs. We
focus on an application of language recognition
task for 21 European languages. During this task,
the letters of an input sentence are projected to let-
ter hypervectors that are combined to form n-gram,
a sequence of n consecutive letters, hypervectors;
these produced n-gram hypervectors are further
superposed to construct a text hypervector for
learning and classification. Our encoder projects
each letter to a sparse letter hypervector of D-bit
with an additional m-bit random signature where
m << D. These signatures of n letters are used to

Digital Object Identifier 10.1109/MDAT.2017.2740839

Date of publication: 17 August 2017; date of current version:

14 November 2017.

Mohsen Imani, John Hwang,
and Tajana Rosing
University of California at San Diego

Abbas Rahimi and Jan M. Rabaey
University of California at Berkeley

Editor’s note:
Online learning for data analysis, categorization and anomaly detection has
become a key technique in a range of adaptive embedded applications. In
this article the authors propose a very low power encoder design using a
sparse, hyperdimensional representation of letters and words in natural lan-
guage and they show that this representation and their design can be used
with high energy efficiency for a language recognition task.

—Axel Jantsch, Royal Institute of Technology Electronics,
Computer and Software Systems

95November/December 2017

generate a unique and sparse n-gram hypervector.
The resulting n-gram hypervectors are superposed
by a programmable thresholder that maintains the
sparsity of produced text hypervector. We compare
the efficiency and accuracy of our proposed sparse
HD encoder with state-of-the-art HD designs using
both dense [6] and sparse [4] codes. Our experi-
mental evaluation shows that with the same level
of accuracy, our sparse HD design provides 12.8×
energy saving and 28.2× energy-delay product
improvement.

Background and related work
Hypervectors are holographic and (pseudo) ran-

dom with i.i.d. components. A hypervector contains
all the information combined and spread across all
its components in a full holistic representation so
that no component is more responsible to store any
piece of information than another. These unique
features make a hypervector robust against errors
in its components. Hypervectors can be manipu-
lated with arithmetic operations, such as binding
that forms a new hypervector which associates two
hypervectors, and bundling that combines several
hypervectors into a single composite hypervector.
The reasoning in HD computing is based on similar-
ity between the hypervectors. This similarity is meas-
ured by a distance metric.

In this paper, we target an application of HD
computing for identifying the language of text
samples, based on encoding consecutive letters
into a hypervector. Recognizing the language of a
given text is the first step in all sorts of language
processing, such as text analysis, categorization,
translation, etc. High-dimensional vector models
are popular in natural-language processing and are
used to capture meaning of a word from word-use
statistics. Random indexing [11] is an algorithm
based on high dimensionality and randomness
and it provides a simple and scalable alternative to
methods based on principal components, such as
latent semantic analysis. We use random indexing
for identifying the source language of text samples
by generating and combining n consecutive letters
(letter n-grams).

An HD architecture is proposed for recogniz-
ing a text language by generating and comparing
text hypervectors [6]: the text hypervector of an
unknown text sample is compared for similarity to
precomputed text hypervectors of known language

samples—the former is referred to as a query hyper-
vector, while the latter are referred to as learned
language hypervectors. The architecture has two
main modules: encoding and associative memory.
The encoding module projects an input text, com-
posed of a stream of letters, to a hypervector. Then,
this hypervector is broadcast to the associative mem-
ory module for comparing with a set of learned lan-
guage hypervectors. The associative memory returns
the language that has the closet match.

The hardware required by the associative mem-
ory to compute the Hamming distance essentially
includes three primary components. These are an
array of XOR gates to find dissimilar bits, a counter to
count the number of mismatched bits in each row,
and finally a comparator to find a row which has the
minimum number of mismatches.

Although these dense representation and encod-
ing operations can provide high classification accu-
racy [6], [8], they suffer from high power consump-
tion due to the large amounts of switching activity
imposed by the nature of dense representation. Other
work aims to use sparsity in the hypervectors aligned
with the direction in [4]; however, their sparse design
achieves a lower classification accuracy on the lan-
guage task compared to the dense design. In addi-
tion, their technique requires a large number of com-
plex circular shifts within segments of the hypervector
which wipes out the benefits of using sparse hyper-
vectors. In contrast, we propose a novel sparse HD
encoder that lowers the power consumption in both
operands and operators. It maintains the sparsity of
operands (hence lower switching activity) with sim-
ple and low-cost operators. Our HD encoder design
also provides high classification accuracy compara-
ble to the dense HD design, but significantly at lower
power cost.

Sparse HD computing
Sparsity

In the dense HD design, hypervectors have
equiprobable zeros and ones, i.e., 50% vector spar-
sity. When such hypervectors are combined using
the dense encoding, it would result in a text hyper-
vector with an expected sparsity of 50%. During test,
an input text hypervector needs to be compared
with all language hypervectors to find the most sim-
ilar class. The bit-level comparison is done using an
XOR array. During the similarity check, the number
of switches in the associative memory is equal to the

96 IEEE Design&Test

General Interest

number of bits different in those hypervectors. As
dense HD design operates with random and orthogo-
nal hypervectors, it can result in a maximum switch-
ing activity1 of ≈ 100% in the associative memory.

It is possible to reduce the switching activity by
transitioning to a sparse hypervector representa-
tion. An important aim of the various algorithms
used to encode item hypervectors is to make the
representations of resulting language hypervec-
tors consistent but different for each class. The
dense design accomplishes this through the use of
i.i.d. random hypervectors and combining n-gram
hypervectors with a combination of shift and XOR
operations [5], [6]. When the multiplication oper-
ation, which in the context of binary hypervec-
tors is equivalent of the logical XOR operation, is
applied to the sparse hypervectors, it does not bind
the hypervectors effectively. Rather, when dealing
with the sparse hypervectors, the XOR operation
exhibits a behavior similar to that of an OR oper-
ation, which displays characteristics of its constit-
uents. Due to the tendency of language to have
bias toward similar n letter permutations, this char-
acteristic of the XOR operation used in the dense
HD encoding would find it difficult to differentiate
similar n-grams. In addition to it, when using sparse
hypervectors, the conventional dense encoding
cannot maintain sparse n-gram hypervectors while
 obtaining the desired accuracy. In other words,

1Switching activity here refers to switching probability at a gate output.

the n-gram and text hypervectors can benefit far
less from such initial sparsity. Thus, the associative
memory will have a switching activity similar to that
achieved when dense hypervectors are used.

Proposed sparse HD encoder
Here, we propose a novel way to encode and bind

sparse hypervectors to differentiate each language
hypervector and give them unique representation.
In our design, we assign a random and orthogonal
hypervector with predefined sparsity to each letter in
the alphabet. In sparse representation, the hypervec-
tors are identified by the place of 1’s rather than their
holographic distribution. Therefore, the definition of
orthogonality is different from that in dense representa-
tion, as in the sparse representation the orthogonal
hypervectors need to have a dot product close to zero.

Our sparse encoding combines these hypervec-
tors to create a unique hypervector representing each
language. We propose an encoding which combines
the sparse hypervectors, while keeping the combined
hypervectors sparse and preserve the crucial informa-
tion on each class of language. Algorithm 1 shows the
steps followed by the proposed sparse encoder. After
assigning the orthogonal hypervectors to each letter in
a language, encoding starts by moving a window con-
taining n letters (i.e., n-gram) through a text. Encoder
combines hypervectors using a unique permutation
on each n-gram index (lines 4–7) and by applying the
thresholding function (line 8) to generate n-gram hyper-
vectors. Finally, the algorithm accumulates n-gram
hypervectors and applies the same thresholding func-
tion using a custom threshold (THR) value (line 11).

Going into details of the proposed encoding, our
technique assigns a random m-bit signature (S) to
each sparse letter hypervector. The goal of these sig-
natures is to create a consistent but unique shift for
each letter hypervector while generating the n-gram
hypervector. This shift enables not only our design
to differentiate between the combination of differ-
ent letters but also the order of their presence in
n-gram. Therefore, to bind hypervectors together in an
n-gram, each hypervector is shifted by the XOR of the
m-signature bits of all other letters in the n-gram win-
dow. This operation in effect applies a unique shift in
the range of 0 . . . 2m − 1 to each letter hypervector. The
actual number of shifts to each item hypervector can
be obtained by

ρK = K−1 + (SN ⊕ SN −1 . . . ⊕ SK +1 ⊕ SK − 1 . . . ⊕ S1)

Algorithm 1. Proposed sparse HD encoding

inputs: item hypervector (L), signature hypervector
(S), training text size (H), n-gram size (N)
outputs: text/language hypervector (T)

 1: iteration ← 0

 2: for c = 1 … Clanguage do

 3: for i = 1 … Htext do

 4: for k = 1 … Ngram do

 5: ρK ← K-1 + (SN ⊕ SN-1 … ⊕ SK+1 ⊕ SK-1

… ⊕ S1)

 6: Z i l← Z i l + ρ k (L k l)
 7: end for

 8: Z Mi
 l←[Z i l] | THR=50%

 9: T c l←T c l + Z Mi
 l

10: end for

11: T Mc
 l←[T c l] | THR

12: end for

13: iteration ← iteration + 1

97November/December 2017

where ρ
K
 shows the number of shifts (or permu-

tations) required for kth letter in the n-gram and Sh

shows the signature of the hth letter in the n-gram. The
sparse hypervectors corresponding to the letters in
the n-gram (L 1

l , L 2
l , L 3

l , … , L N l) are combined as follows
to generate an n-gram hypervector:

 ZM i
l = [ρ N (L N l) + ρ N − 1 (L N−1

l) + … + ρ 1 (L 1
l)] | THR=50%

where [+] |THR is the thresholding function which
looks at the value at each index, and in the case
of surpassing a certain THR level, it is represented
by “1.” Finally, in order to generate text/language
hypervectors, the n-grams (ZM i

l) are combined using
another thresholding function but with a controlla-
ble THR value (line 11).

 T M c
l
 = [ZM 1

l + ZM 2
l + … + ZM H l] | THR

where TM is the generated text hypervector. The pri-
mary purpose of the thresholding function is to apply
thinning to the n-gram hypervectors for maintaining
an appropriate density.

Sparse encoding parameters
Here, we explore the impact of different parame-

ters on the accuracy and efficiency of the proposed
sparse encoding. For optimal results, m should be
large enough to create a unique signature for each
letter (2m > Nletters). Alternatively, at the cost of a
slight decrease in the accuracy, some letters can
use the same signature in the case where maintain-
ing a small m is important. Increasing the value of
m improves the classification accuracy by assign-
ing a unique signature to each letter. However, our
results show that HD accuracy starts saturating for m
larger than 5 bits, because using 5 bits is enough to
provide a unique signature for each letter in the EU
languages. In terms of energy consumption, using
large m slightly degrades the energy efficiency of HD
computing by increasing the number of the required
shift operations. For sparse design, we
set m to 4 bits to provide the maximum
accuracy of 95.4%.

The thresholding function sets the
sparsity of text hypervector by con-
trolling the value of THR. THR has
impact on the accuracy and efficiency
of language classification. Our design
exploits this parameter as a means of
setting the sparsity of the text/language
hypervectors. Table 1 shows the impact

of using different THR values on the classification
accuracy, text hypervector sparsity, and the switch-
ing activity of the proposed HD design. The HD
energy and switching activity increase with the THR
value, as large THR results in higher switching activ-
ity in the associative memory. In terms of HD accu-
racy, THR = 30% provides maximum classification
accuracy. Using smaller THR significantly increases
the text hypervector sparsity and results in missing
information. On the other hand, large THR value,
i.e., 40%–50%, increases the density of text hyper-
vectors and results in lower classification accu-
racy. In this work, we set the THR = 30% in order
to provide the maximum classification accuracy
with about 6.1% text hypervector sparsity and 11.1%
switching activity.

Hardware implementation
Figure 1 shows hardware implementation of

the proposed sparse design, consisting of both the
encoder and associative memory. The encoder
block generates the signature (m-bit) and sparse let-
ter hypervector (D-bit) for every input letter using the
item memory. The letter hypervectors and related
signatures are fetched in their order in which they
are present in the text. Based on a signature, first our
design generates a unique shift for each letter hyper-
vector in the n-gram window (n = 3 in Figure 1).
Then, the encoder shifts the letter hypervectors
based on these shift values. These shifted hypervec-
tors are combined using accumulator and thresh-
olding technique to generate the first n-gram hyper-
vector. For the second iteration, a signature and a
letter hypervector of the next letter are fetched to
the window (in a FIFO fashion) to generate the sec-
ond n-gram hypervector. For example, if the input
text is “HELLO,” the “H,” “E,” and “L” are the letter
hypervectors 1 to 3, respectively, to generate the first
n-gram. For the second iteration, “E,” “L,” and “L” are

Table 1. Impact of THR value on the classification accuracy,
text hypervector sparsity, and total switching activity of the
proposed sparse HD design.

98 IEEE Design&Test

General Interest

placed in letter hypervectors 1 to 3, respectively, to
generate the second n-gram, and so on. After going
through the entire text input, an accumulator and a
thresholding block generate the text hypervector by
combining all the produced n-gram hypervectors.
Figure 1b shows a digital hardware design of the
associative memory consisting of three stages: AND
array, counter, and comparator.

The associative memory checks similarity in
the test mode. While the prior dense design uses
Hamming distance or cosine similarity as a metric
to find the most similar row, the proposed sparse
design makes the hypervector comparisons using
dot product. This is because of the importance given

to the position of the few 1’s in each hypervector. In
the sparse design, the goal is to calculate the num-
ber of indices with aligned ones, which is more effi-
ciently accomplished using dot product metric or its
binary equivalent, the AND operation. Therefore, our
design uses an array of AND gates (instead of XOR
gates in the dense associative memory) to calculate
the similarity of the input query hypervector to all
stored language hypervectors. This is a major advan-
tage in terms of energy consumption, as AND gate
array not only requires fewer transistors to imple-
ment, but also involves significantly lower switching
activity in comparison to XOR due to its asymmetric
output toward a 0.

In the second stage, a counter
calculates bit similarity using the
output of the AND array. Finally a
comparator block, implemented in
a tree structure, searches the coun-
ter outputs to find a class which has
the maximum similarity to the input
query. In the prior dense design [6],
the text hypervectors are expected
to be dense with 50% elements as 1.
These dense hypervectors can incur
the maximum switching activity of
100% during the associative search.
Figure 2 shows the switching activity
of the encoding and associative mem-
ory blocks when the input sparsity
changes from 5% to 50%. In the dense

Figure 1. The proposed sparse HD implementation: (a) encoding block and (b) associative memory.

Figure 2. Comparison of the switching activity of dense and proposed
sparse HD in (a) encoding and (b) associative memory blocks for the
different values of input hypervector sparsity.

5% 10% 20% 30% 40% 50%
0

10

20

30

40

50

Item Memory Sparsity

S
w

it
ch

in
g

 A
ct

iv
it

y
(%

)

Dense Design
Sparse Design

5% 10% 20% 30% 40% 50%
0

10

20

30

40

50

60

70

80

90

Item Memory Sparsity

S
w

it
ch

in
g

 A
ct

iv
it

y
(%

)

Dense Design
Sparse Design

99November/December 2017

design, the sparsity can result in lower switching
activity mostly in the encoding block. The way in
which the dense HD design encodes the item hyper-
vectors results in generating n-gram and text hyper-
vectors with dense representation, regardless of their
initial sparsity in item memory. This eliminates the
possibility of benefiting from hypervector sparsity in
the associative memory of the dense design. In con-
trast, the sparse encoding tries to keep the sparsity
of the text hypervectors low using the thresholding
function, to reduce the switching activity of both
encoder and associative memory. Another aspect of
the design affected by this feature is the maximum
size required for the counter and comparator. While
the dense design may require counters as large as
the logarithm of dimension (D), the size of coun-
ter in sparse design is bounded by the lowest spar-
sity of the trained language hypervectors (i.e., the
maximum number of ones). The lowest language
hypervector sparsity depends on the THR value in
encoding scheme. We discuss more about the coun-
ter and comparator size in the following section.

Evaluations
Experimental setup

We compare the power, execution time, and
accuracy of the dense and proposed sparse HD
designs. We describe these designs in a para-
metrized manner using RTL SystemVerilog. For the
synthesis, we use Synopsys Design Compiler with
the TSMC 45-nm technology library for the general
purpose process with high VTH cells. We extract the
switching activity using ModelSim by applying the
test sentences. We measure the power consump-
tions using Synopsys PrimeTime at (1 V, 25 °C, and
TT) corner.

To test the efficiency, we apply the application
to the recognition of 21 European languages. The
training and testing data sets are taken from the
Wortschatz Corpora [12]. The training texts for the lan-
guage hypervectors are around one megabyte in size.
We use 1,000 testing sentences that are taken from
the Europarl Parallel Corpus [12]. The accuracy rep-
resents the percentage of correctly recognized sen-
tences from 21,000 test samples. The accuracy of the
various designs is tested through Matlab simulations.

Accuracy
Figure 3a shows the accuracy of the dense and

the sparse designs for different values of item mem-
ory sparsity. As the figure shows, these two designs
exhibit completely different sensitivity to sparsity. In
the sparse design, the shift operation has a significant
impact on differentiating two different hypervec-
tors. This effect is not significant for hypervectors of
greater density. The difference in our sparse and the
previous dense approaches is that our sparse design
is more about patterns in positions of ones, while the
dense design is more about establishing a very dis-
tributed series of patterns. In the dense design, the
accuracy significantly drops with the reducing spar-
sity of the n-gram hypervectors to a degree which
wipes out the benefits provided by the sparse seed
hypervectors. In contrast, the proposed sparse HD
design has significantly a higher accuracy at a higher
sparsity. This can be credited to the proposed encod-
ing which makes the hypervectors unique.

Sparsity and efficiency
In terms of energy consumption, the proposed

sparse HD has noticeably better performance than
the dense HD designs due to the following.

Figure 3. The energy consumption and execution time of the dense and the sparse HD
designs when item memory uses different values of hypervector sparsity. (a) Accuracy.
(b) Energy consumption. (c) Execution time.

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0

20

40

60

80

100

Item Memory Sparsity

H
D

 C
o

m
p

u
ti

n
g

 A
cc

u
ra

cy
 (

%
)

Sparse Design
Dense Design

50% 33% 16% 12% 4%
0

1

2

3

4

Item Vector Sparsity

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

m
W

)

Dense Design
Sparse Design

50% 33% 16% 12% 4%
0

50

100

150

Item Vector Sparsity

E
xe

cu
ti

o
n

 T
im

e
(n

s)

Dense Design
Sparse Design

100 IEEE Design&Test

General Interest

• Using the dot product instead of Hamming distance
metric to find the hypervector with closest similar-
ity. This is the logical equivalent of using an efficient
AND array rather than an energy hungry XOR array
to determine the hypervector similarity. Our evalua-
tion shows that the energy consumption of an AND
array in the context of our application is around
60% of that of the XOR, in addition to its lower delay.

• The switching activity of the bit-level comparison
significantly decreases using the sparse hyper-
vector. Figure 3b shows the power consumption
of the dense and proposed sparse HD designs
when the input sparsity varies from 4% to 50%.
In each configuration, we set the HD parameters
(i.e., the n-gram size and THR value) such that we
achieve the best energy improvement. The result
shows that the noticeable energy benefit of the
sparse HD is caused by its higher sparsity rather
than replacing the XOR with AND gates.

Figure 3c also compares the execution time of HD
designs in a different sparsity. The result shows that for
the same sparsity, the proposed sparse design works
faster than the dense design. This improvement is
partly due to using the dot product similarity imple-
mented using a fast AND array to compute the most
similar hypervector. However, the main sparse design
speedup benefit comes from its smaller counter and
comparator blocks. As we discussed in hardware
implementation the dense design requires counter to
support up to D-bit counting, while in the sparse design

this number is much lower. In the sparse design, the
highest sparsity of the trained hypervectors, usually
about 6%, determines the maximum bitwidth of the
counter and comparator blocks. Our evaluations show
that while achieving the maximum accuracy of 95%,
the proposed sparse design can provide 12.8× energy
reduction, 2.2× speedup, and 28.2× energy-delay prod-
uct improvement in comparison to the dense design.

Table 2 shows the impact of dimension scalability
on the classification accuracy of dense and sparse
HD. The results show that both HD designs have
high robustness to dimension reduction, however,
the sparse HD shows higher robustness specially
when the dimensionality goes below 4000 bits.

Area efficiency comparison
Here, we compare the area of different HD

designs. For each design, the area depends on

• the number of transistors involved in the imple-
mentation of the comparison array;

• the maximum size of counter and comparator re-
quired to count and compare the hypervectors.
The estimation made by Synopses Design Com-
piler shows that the proposed sparse design has
34% lower area compared to the dense design.

Finally, we compare the efficiency of the proposed
design with the prior sparse HD design, segmented,
proposed in [4]. To achieve the maximum accuracy,
our sparse and segmented designs use the sparsity
of 4% and 10%, respectively. As Table 3 shows, the
maximum accuracy that segmented can achieve is
92.6%, which is 2.8% less than our proposed sparse
design. In addition, while considering the efficiency,
our proposed design can provide 5.2× energy sav-
ings and 1.4× speedup (7.28× EDP improvement) as
compared to the segmented design. This efficiency is
due to higher sparsity and simpler encoding scheme
used in our proposed sparse design.

fast and one-shot learning capabilities of
brain-inspired HD computing make it a prime candi-
date for on-chip learning. However, the large amount
of switching activities, imposed by dense binary
hypervectors, increases the power consumption. We
propose a more biologically plausible sparse binary
representation where the number of ones is signifi-
cantly less than zeros in the hypervectors.

We design a low-power encoder which parti-
tions an input sentence into a set of letter n-grams
and computes the related n-gram hypervectors and

Table 3. Energy consumption, execution time, and sparsity of the
segmented and our proposed sparse design for maximum accuracy
(D = 10,000 bits).

Table 2. Classification accuracy of the proposed sparse and the
dense HD designs with a different dimensionality (D).

101November/December 2017

text hypervectors while maintaining the sparsity.
We show its application for European language rec-
ognition task. Our experimental evaluation shows
that, for the same level of classification accuracy,
our sparse HD design provides 12.8× energy reduc-
tion and 28.2× energy-delay product improvement as
 compared to the state-of-the-art dense HD design.

Acknowledgments
This work was supported by Systems on Nanos-

cale Information fabriCs, one of the six SRC STARnet
Centers, sponsored by MARCO, DARPA, and NSF
Grant 1527034.

 References
 [1] H. Li et al., “Hyperdimensional computing with 3d

VRRAM in-memory kernels: Device-architecture

co-design for energy-efficient, error-resilient language

recognition,” in Proc. IEEE Int. Electron Devices

Meeting, 2016, pp. 16–20.

 [2] P. Kanerva, “Hyperdimensional computing: An

introduction to computing in distributed representation

with high-dimensional random vectors,” Cognit.

Comput., vol. 1, no. 2, pp. 139–159, 2009.

 [3] P. Kanerva, “What we mean when we say “whats

the dollar of mexico?”: Prototypes and mapping in

concept space,” in Proc. AAAI Fall Symp.: Quantum

Informatics for Cognitive, Social, and Semantic

Processes, 2010, pp. 2–6.

 [4] M. Laiho, J. H. Poikonen, P. Kanerva, and E. Lehtonen,

“High dimensional computing with sparse vectors,” in

Proc. Biomed. Circuits Syst. Conf., 2015, pp. 1–4.

 [5] A. Joshi, J. Halseth, and P. Kanerva, “Language

geometry using random indexing,” in Proc. Quantum

Interaction 2016 Conf., 2016, pp. 265–274.

 [6] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A

robust and energy efficient classifier using brain-

inspired hyperdimensional computing,” in Proc.

2016 IEEE/ACM Int. Symp. Low Power Electronics

Des., Aug. 2016, pp. 64–69.

 [7] M. Imani, A. Rahimi, D. Kong, T. Rosing, and

J. M. Rabaey, “Exploring hyperdimensional associative

memory,” in Proc. 2017 IEEE Int. Symp. High

Performance Comput. Architecture, 2017, pp. 445–456.

 [8] A. Rahimi, P. K. L. Benini, and J. M. Rabaey,

“Hyperdimensional biosignal processing: A case study

for EMG-based hand gesture recognition,” in Proc.

IEEE Int. Conf. Rebooting Comput., Oct. 2016.

 [9] O. Rasanen and J. Saarinen, “Sequence prediction

with sparse distributed hyperdimensional coding

applied to the analysis of mobile phone use patterns,”

IEEE Transactions on Neural Networks and Learning

Systems, vol. 27, no. 9, pp. 1878–1889, 2016.

 [10] A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky, and

L. F. Abbott, “Optimal degrees of synaptic connectivity,”

Neuron, vol. 93, pp. 1153–1164.e7, May 2017.

 [11] P. Kanerva, J. Kristofersson, and A. Holst, “Random

indexing of text samples for latent semantic analysis,”

in Proc. 22nd Annu. Conf. Cognit. Sci. Society, 2000,

vol. 1036, Citeseer, pp. 1–2.

 [12] U. Quasthoff, M. Richter, and C. Biemann, “Corpus

portal for search in monolingual corpora,” in Proc. 5th

Int. Conf. Language Resources Evaluation, 2006, p. 21.

Mohsen Imani is a member of the System Energy
Efficiency Laboratory and is currently with the University
of California (UC) Berkeley’s Wireless Research Center
on neuromorphic computing projects. He is a PhD
candidate at the Department of Computer Science and
Engineering, UC San Diego. His research interests are
approximate computing, brain-inspired computing,
and processing-in-memory architecture.

John Hwang is an Engineer at Parsons Corporation
Inc. He received a BS from the Department of Computer
Science and Engineering, UC San Diego.

Tajana Rosing is a Professor, a holder of the
Fratamico Endowed Chair, and the Director of the
System Energy Efficiency Laboratory at the University
of California San Diego. She is currently heading the
effort in SmartCities as a part of DARPA and industry-
funded TerraSwarm Center. Her research interests
are energy efficient computing and embedded and
distributed systems.

Abbas Rahimi is currently a Post-Doctoral
Scholar at the Department of Electrical Engineering
and Computer Sciences, University of California (UC)
Berkeley, CA, USA. He received a PhD in computer
science and engineering from UC San Diego,
CA, USA, in 2015. He is a member of the Berkeley
Wireless Research Center.

Jan M. Rabaey holds the Donald O. Pederson
Distinguished Professorship at the University of
California at Berkeley. He is a Founding Director
of the Berkeley Wireless Research Center and
the Berkeley Ubiquitous Swarm Lab and is
currently the Electrical Engineering Division Chair
at Berkeley.

 Direct questions and comments about this article
to Mohsen Imani, Department of Computer Science
and Engineering, University of California at San
Diego, CA 92093 USA; e-mail: moimani@ucsd.edu.

