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Low-Power Sparse 
Hyperdimensional 
Encoder for Language 
Recognition

 Brain-inspired information processing archi-
tectures provide a promising new avenue to improve 
energy efficiency, asymptotically approaching the 
efficiency of brain computation, while tolerating vari-
ations in nanoscale fabrics [1]. In these architectures, 
patterns are used as basic data representation in con-
trast to computing with numbers. Hyperdimensional 
(HD) computing [2] captures and imitates this idea 
of distributed pattern-based data representations 
in the form of hypervectors-high-dimensional ran-
dom vectors with dimensionality in thousands (e.g.,  
D = 10,000 bits). HD computing builds upon a well- 
defined set of operations with random hypervectors 
and offers a complete computational paradigm that 
is easily applied to learning problems. Examples 

include analogy-based reasoning [3], 
sequence memory [4], language recog-
nition [5]–[7], biosignal processing [8], 
and prediction from multimodal sensor 
fusion [9]. These applications typically 
use various encoding operations on 
dense hypervectors, where zeros and 
ones are equiprobable. These encoding 
operations, specifically bitwise XOR and 
shift, impose a large amount of switch-
ing activity that results in higher power 
consumption.

In this paper, we propose a more biologically 
plausible [10], sparse binary representation, and 
related low-power encoding operations to pro-
duce and maintain sparse hypervectors where the 
number of ones is significantly less than zeros. The 
representation and encoding operations effectively 
control and reduce the large switching activity 
and power consumption of prior HD designs. We 
focus on an application of language recognition 
task for 21 European languages. During this task, 
the letters of an input sentence are projected to let-
ter hypervectors that are combined to form n-gram, 
a sequence of n consecutive letters, hypervectors; 
these produced n-gram hypervectors are further 
superposed to construct a text hypervector for 
learning and classification. Our encoder projects 
each letter to a sparse letter hypervector of D-bit 
with an additional m-bit random signature where 
m << D. These signatures of n letters are used to 
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generate a unique and sparse n-gram hypervector. 
The resulting n-gram hypervectors are superposed 
by a programmable thresholder that maintains the 
sparsity of produced text hypervector. We compare 
the efficiency and accuracy of our proposed sparse 
HD encoder with state-of-the-art HD designs using 
both dense [6] and sparse [4] codes. Our experi-
mental evaluation shows that with the same level 
of accuracy, our sparse HD design provides 12.8× 
energy saving and 28.2× energy-delay product 
improvement.

Background and related work
Hypervectors are holographic and (pseudo) ran-

dom with i.i.d. components. A hypervector contains 
all the information combined and spread across all 
its components in a full holistic representation so 
that no component is more responsible to store any 
piece of information than another. These unique 
features make a hypervector robust against errors 
in its components. Hypervectors can be manipu-
lated with arithmetic operations, such as binding 
that forms a new hypervector which associates two 
hypervectors, and bundling that combines several 
hypervectors into a single composite hypervector. 
The reasoning in HD computing is based on similar-
ity between the hypervectors. This similarity is meas-
ured by a distance metric.

In this paper, we target an application of HD 
computing for identifying the language of text 
samples, based on encoding consecutive letters 
into a hypervector. Recognizing the language of a 
given text is the first step in all sorts of language 
processing, such as text analysis, categorization, 
translation, etc. High-dimensional vector models 
are popular in natural-language processing and are 
used to capture meaning of a word from word-use 
statistics. Random indexing [11] is an algorithm 
based on high dimensionality and randomness 
and it provides a simple and scalable alternative to 
methods based on principal components, such as 
latent semantic analysis. We use random indexing 
for identifying the source language of text samples 
by generating and combining n consecutive letters 
(letter n-grams).

An HD architecture is proposed for recogniz-
ing a text language by generating and comparing 
text hypervectors [6]: the text hypervector of an 
unknown text sample is compared for similarity to 
precomputed text hypervectors of known language 

samples—the former is referred to as a query hyper-
vector, while the latter are referred to as learned 
language hypervectors. The architecture has two 
main modules: encoding and associative memory. 
The encoding module projects an input text, com-
posed of a stream of letters, to a hypervector. Then, 
this hypervector is broadcast to the associative mem-
ory module for comparing with a set of learned lan-
guage hypervectors. The associative memory returns 
the language that has the closet match.

The hardware required by the associative mem-
ory to compute the Hamming distance essentially 
includes three primary components. These are an 
array of XOR gates to find dissimilar bits, a counter to 
count the number of mismatched bits in each row, 
and finally a comparator to find a row which has the 
minimum number of mismatches.

Although these dense representation and encod-
ing operations can provide high classification accu-
racy [6], [8], they suffer from high power consump-
tion due to the large amounts of switching activity 
imposed by the nature of dense representation. Other 
work aims to use sparsity in the hypervectors aligned 
with the direction in [4]; however, their sparse design 
achieves a lower classification accuracy on the lan-
guage task compared to the dense design. In addi-
tion, their technique requires a large number of com-
plex circular shifts within segments of the hypervector 
which wipes out the benefits of using sparse hyper-
vectors. In contrast, we propose a novel sparse HD 
encoder that lowers the power consumption in both 
operands and operators. It maintains the sparsity of 
operands (hence lower switching activity) with sim-
ple and low-cost operators. Our HD encoder design 
also provides high classification accuracy compara-
ble to the dense HD design, but significantly at lower 
power cost.

Sparse HD computing
Sparsity

In the dense HD design, hypervectors have 
equiprobable zeros and ones, i.e., 50% vector spar-
sity. When such hypervectors are combined using 
the dense encoding, it would result in a text hyper-
vector with an expected sparsity of 50%. During test, 
an input text hypervector needs to be compared 
with all language hypervectors to find the most sim-
ilar class. The bit-level comparison is done using an 
XOR array. During the similarity check, the number 
of switches in the associative memory is equal to the 
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number of bits different in those hypervectors. As 
dense HD design operates with random and orthogo-
nal hypervectors, it can result in a maximum switch-
ing activity1 of ≈ 100% in the associative memory.

It is possible to reduce the switching activity by 
transitioning to a sparse hypervector representa-
tion. An important aim of the various algorithms 
used to encode item hypervectors is to make the 
representations of resulting language hypervec-
tors consistent but different for each class. The 
dense design accomplishes this through the use of 
i.i.d. random hypervectors and combining n-gram 
hypervectors with a combination of shift and XOR 
operations [5], [6]. When the multiplication oper-
ation, which in the context of binary hypervec-
tors is equivalent of the logical XOR operation, is 
applied to the sparse hypervectors, it does not bind 
the hypervectors effectively. Rather, when dealing 
with the sparse hypervectors, the XOR operation 
exhibits a behavior similar to that of an OR oper-
ation, which displays characteristics of its constit-
uents. Due to the tendency of language to have 
bias toward similar n letter permutations, this char-
acteristic of the XOR operation used in the dense 
HD encoding would find it difficult to differentiate 
similar n-grams. In addition to it, when using sparse 
hypervectors, the conventional dense encoding 
cannot maintain sparse n-gram hypervectors while 
 obtaining the desired accuracy. In other words, 

1Switching activity here refers to switching probability at a gate output.

the n-gram and text hypervectors can benefit far 
less from such initial sparsity. Thus, the associative 
memory will have a switching activity similar to that 
achieved when dense hypervectors are used.

Proposed sparse HD encoder
Here, we propose a novel way to encode and bind 

sparse hypervectors to differentiate each language 
hypervector and give them unique representation. 
In our design, we assign a random and orthogonal 
hypervector with predefined sparsity to each letter in 
the alphabet. In sparse representation, the hypervec-
tors are identified by the place of 1’s rather than their 
holographic distribution. Therefore, the definition of 
orthogonality is different from that in dense representa-
tion, as in the sparse representation the orthogonal 
hypervectors need to have a dot product close to zero.

Our sparse encoding combines these hypervec-
tors to create a unique hypervector representing each 
language. We propose an encoding which combines 
the sparse hypervectors, while keeping the combined 
hypervectors sparse and preserve the crucial informa-
tion on each class of language. Algorithm 1 shows the 
steps followed by the proposed sparse encoder. After 
assigning the orthogonal hypervectors to each letter in 
a language, encoding starts by moving a window con-
taining n letters (i.e., n-gram) through a text. Encoder 
combines hypervectors using a unique permutation 
on each n-gram index (lines 4–7) and by applying the 
thresholding function (line 8) to generate n-gram hyper-
vectors. Finally, the algorithm accumulates n-gram 
hypervectors and applies the same thresholding func-
tion using a custom threshold (THR) value (line 11).

Going into details of the proposed encoding, our 
technique assigns a random m-bit signature (S) to 
each sparse letter hypervector. The goal of these sig-
natures is to create a consistent but unique shift for 
each letter hypervector while generating the n-gram 
hypervector. This shift enables not only our design 
to differentiate between the combination of differ-
ent letters but also the order of their presence in 
n-gram. Therefore, to bind hypervectors together in an 
n-gram, each hypervector is shifted by the XOR of the  
m-signature bits of all other letters in the n-gram win-
dow. This operation in effect applies a unique shift in 
the range of 0 . . . 2m − 1 to each letter hypervector. The 
actual number of shifts to each item hypervector can 
be obtained by

ρK = K−1 + (SN  ⊕  SN  −1 . . . ⊕  SK  +1 ⊕ SK  − 1 . . . ⊕  S1)

Algorithm 1. Proposed sparse HD encoding

inputs: item hypervector (L), signature hypervector 
(S), training text size (H), n-gram size (N)
outputs: text/language hypervector (T)

 1: iteration ← 0

 2: for c = 1  …  Clanguage do

 3:     for i = 1  …  Htext do

 4:         for k = 1  …  Ngram do

 5:              ρK ← K-1 + (SN ⊕ SN-1  …  ⊕ SK+1 ⊕ SK-1  

…  ⊕ S1)

 6:               Z  i  l← Z  i  l  +  ρ  k   ( L  k  l )  
 7:           end for

 8:             Z  Mi  
   l←[ Z  i  l ]  |    THR=50%    

 9:             T  c  l←T  c  l  +  Z  Mi  
   l  

10:          end for

11:           T  Mc  
   l←[ T  c  l ]  |    THR     

12:     end for  

13: iteration ← iteration + 1
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where ρ
K
 shows the number of shifts (or permu-

tations) required for kth letter in the n-gram and Sh 

shows the signature of the hth letter in the n-gram. The 
sparse hypervectors corresponding to the letters in 
the n-gram  ( L  1  

l  ,  L  2  
l  ,  L  3  

l  ,  … ,  L  N  l  )  are combined as follows 
to generate an n-gram hypervector:

  ZM  i  
l  =  [ ρ  N    ( L  N  l  )  +  ρ  N   − 1  ( L  N−1  

l  )  + … +  ρ  1    ( L  1  
l  ) ]  |    THR=50%    

where [+] |THR is the thresholding function which 
looks at the value at each index, and in the case 
of surpassing a certain THR level, it is represented 
by “1.” Finally, in order to generate text/language 
hypervectors, the n-grams (  ZM  i  

l  ) are combined using 
another thresholding function but with a controlla-
ble THR value (line 11).

  T   M  c  
l
     =  [ ZM  1  

l   +  ZM  2  
l   + … +  ZM   H  l  ]  |    THR    

where TM is the generated text hypervector. The pri-
mary purpose of the thresholding function is to apply 
thinning to the n-gram hypervectors for maintaining 
an appropriate density.

Sparse encoding parameters
Here, we explore the impact of different parame-

ters on the accuracy and efficiency of the proposed 
sparse encoding. For optimal results, m should be 
large enough to create a unique signature for each 
letter (2m > Nletters). Alternatively, at the cost of a 
slight decrease in the accuracy, some letters can 
use the same signature in the case where maintain-
ing a small m is important. Increasing the value of 
m improves the classification accuracy by assign-
ing a unique signature to each letter. However, our 
results show that HD accuracy starts saturating for m 
larger than 5 bits, because using 5 bits is enough to 
provide a unique signature for each letter in the EU 
languages. In terms of energy consumption, using 
large m slightly degrades the energy efficiency of HD 
computing by increasing the number of the required 
shift operations. For sparse design, we 
set m to 4 bits to provide the maximum 
accuracy of 95.4%.

The thresholding function sets the 
sparsity of text hypervector by con-
trolling the value of THR. THR has 
impact on the accuracy and efficiency 
of language classification. Our design 
exploits this parameter as a means of 
setting the sparsity of the text/language 
hypervectors. Table 1 shows the impact 

of using different THR values on the classification 
accuracy, text hypervector sparsity, and the switch-
ing activity of the proposed HD design. The HD 
energy and switching activity increase with the THR 
value, as large THR results in higher switching activ-
ity in the associative memory. In terms of HD accu-
racy, THR = 30% provides maximum classification 
accuracy. Using smaller THR significantly increases 
the text hypervector sparsity and results in missing 
information. On the other hand, large THR value, 
i.e., 40%–50%, increases the density of text hyper-
vectors and results in lower classification accu-
racy. In this work, we set the THR = 30% in order 
to provide the maximum classification accuracy 
with about 6.1% text hypervector sparsity and 11.1% 
switching activity.

Hardware implementation
Figure 1 shows hardware implementation of 

the proposed sparse design, consisting of both the 
encoder and associative memory. The encoder 
block generates the signature (m-bit) and sparse let-
ter hypervector (D-bit) for every input letter using the 
item memory. The letter hypervectors and related 
signatures are fetched in their order in which they 
are present in the text. Based on a signature, first our 
design generates a unique shift for each letter hyper-
vector in the n-gram window (n = 3 in Figure 1). 
Then, the encoder shifts the letter hypervectors 
based on these shift values. These shifted hypervec-
tors are combined using accumulator and thresh-
olding technique to generate the first n-gram hyper-
vector. For the second iteration, a signature and a 
letter hypervector of the next letter are fetched to 
the window (in a FIFO fashion) to generate the sec-
ond n-gram hypervector. For example, if the input 
text is “HELLO,” the “H,” “E,” and “L” are the letter 
hypervectors 1 to 3, respectively, to generate the first 
n-gram. For the second iteration, “E,” “L,” and “L” are 

 
Table 1. Impact of THR value on the classification accuracy,  
text hypervector sparsity, and total switching activity of the  
proposed sparse HD design.
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placed in letter hypervectors 1 to 3, respectively, to 
generate the second n-gram, and so on. After going 
through the entire text input, an accumulator and a 
thresholding block generate the text hypervector by 
combining all the produced n-gram hypervectors. 
Figure 1b shows a digital hardware design of the 
associative memory consisting of three stages: AND 
array, counter, and comparator.

The associative memory checks similarity in 
the test mode. While the prior dense design uses 
Hamming distance or cosine similarity as a metric 
to find the most similar row, the proposed sparse 
design makes the hypervector comparisons using 
dot product. This is because of the importance given 

to the position of the few 1’s in each hypervector. In 
the sparse design, the goal is to calculate the num-
ber of indices with aligned ones, which is more effi-
ciently accomplished using dot product metric or its 
binary equivalent, the AND operation. Therefore, our 
design uses an array of AND gates (instead of XOR 
gates in the dense associative memory) to calculate 
the similarity of the input query hypervector to all 
stored language hypervectors. This is a major advan-
tage in terms of energy consumption, as AND gate 
array not only requires fewer transistors to imple-
ment, but also involves significantly lower switching 
activity in comparison to XOR due to its asymmetric 
output toward a 0.

In the second stage, a counter 
calculates bit similarity using the 
output of the AND array. Finally a 
comparator block, implemented in 
a tree structure, searches the coun-
ter outputs to find a class which has 
the maximum similarity to the input 
query. In the prior dense design [6], 
the text hypervectors are expected 
to be dense with 50% elements as 1. 
These dense hypervectors can incur 
the maximum switching activity of 
100% during the associative search. 
Figure 2 shows the switching activity 
of the encoding and associative mem-
ory blocks when the input sparsity 
changes from 5% to 50%. In the dense  

Figure 1. The proposed sparse HD implementation: (a) encoding block and (b) associative memory.

Figure 2. Comparison of the switching activity of dense and proposed 
sparse HD in (a) encoding and (b) associative memory blocks for the 
different values of input hypervector sparsity.
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design, the sparsity can result in lower switching 
activity mostly in the encoding block. The way in 
which the dense HD design encodes the item hyper-
vectors results in generating n-gram and text hyper-
vectors with dense representation, regardless of their 
initial sparsity in item memory. This eliminates the 
possibility of benefiting from hypervector sparsity in 
the associative memory of the dense design. In con-
trast, the sparse encoding tries to keep the sparsity 
of the text hypervectors low using the thresholding 
function, to reduce the switching activity of both 
encoder and associative memory. Another aspect of 
the design affected by this feature is the maximum 
size required for the counter and comparator. While 
the dense design may require counters as large as 
the logarithm of dimension (D), the size of coun-
ter in sparse design is bounded by the lowest spar-
sity of the trained language hypervectors (i.e., the 
maximum number of ones). The lowest language 
hypervector sparsity depends on the THR value in 
encoding scheme. We discuss more about the coun-
ter and comparator size in the following section.

Evaluations
Experimental setup

We compare the power, execution time, and 
accuracy of the dense and proposed sparse HD 
designs. We describe these designs in a para-
metrized manner using RTL SystemVerilog. For the 
synthesis, we use Synopsys Design Compiler with 
the TSMC 45-nm technology library for the general 
purpose process with high VTH cells. We extract the 
switching activity using ModelSim by applying the 
test sentences. We measure the power consump-
tions using Synopsys PrimeTime at (1 V, 25 °C, and 
TT) corner.

To test the efficiency, we apply the application 
to the recognition of 21 European languages. The 
training and testing data sets are taken from the 
Wortschatz Corpora [12]. The training texts for the lan-
guage hypervectors are around one megabyte in size. 
We use 1,000 testing sentences that are taken from 
the Europarl Parallel Corpus [12]. The accuracy rep-
resents the percentage of correctly recognized sen-
tences from 21,000 test samples. The accuracy of the 
various designs is tested through Matlab simulations.

Accuracy
Figure 3a shows the accuracy of the dense and 

the sparse designs for different values of item mem-
ory sparsity. As the figure shows, these two designs 
exhibit completely different sensitivity to sparsity. In 
the sparse design, the shift operation has a significant 
impact on differentiating two different hypervec-
tors. This effect is not significant for hypervectors of 
greater density. The difference in our sparse and the 
previous dense approaches is that our sparse design 
is more about patterns in positions of ones, while the 
dense design is more about establishing a very dis-
tributed series of patterns. In the dense design, the 
accuracy significantly drops with the reducing spar-
sity of the n-gram hypervectors to a degree which 
wipes out the benefits provided by the sparse seed 
hypervectors. In contrast, the proposed sparse HD 
design has significantly a higher accuracy at a higher 
sparsity. This can be credited to the proposed encod-
ing which makes the hypervectors unique.

Sparsity and efficiency
In terms of energy consumption, the proposed 

sparse HD has noticeably better performance than 
the dense HD designs due to the following.

Figure 3. The energy consumption and execution time of the dense and the sparse HD  
designs when item memory uses different values of hypervector sparsity. (a) Accuracy.  
(b) Energy consumption. (c) Execution time.
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• Using the dot product instead of Hamming  distance 
metric to find the hypervector with closest similar-
ity. This is the logical equivalent of using an efficient 
AND array rather than an energy hungry XOR array 
to determine the hypervector similarity. Our evalua-
tion shows that the energy consumption of an AND 
array in the context of our application is around 
60% of that of the XOR, in addition to its lower delay. 

• The switching activity of the bit-level comparison 
significantly decreases using the sparse hyper-
vector. Figure 3b shows the power consumption 
of the dense and proposed sparse HD designs 
when the input sparsity varies from 4% to 50%. 
In each configuration, we set the HD parameters 
(i.e., the n-gram size and THR value) such that we 
achieve the best energy improvement. The result 
shows that the noticeable energy benefit of the 
sparse HD is caused by its higher sparsity rather 
than replacing the XOR with AND gates.

Figure 3c also compares the execution time of HD 
designs in a different sparsity. The result shows that for 
the same sparsity, the proposed sparse design works 
faster than the dense design. This improvement is 
partly due to using the dot product similarity imple-
mented using a fast AND array to compute the most 
similar hypervector. However, the main sparse design 
speedup benefit comes from its smaller counter and 
comparator blocks. As we discussed in hardware 
implementation the dense design requires counter to 
support up to D-bit counting, while in the sparse design 

this number is much lower. In the sparse design, the 
highest sparsity of the trained hypervectors, usually 
about 6%, determines the maximum bitwidth of the 
counter and comparator blocks. Our evaluations show 
that while achieving the maximum accuracy of 95%, 
the proposed sparse design can provide 12.8× energy 
reduction, 2.2× speedup, and 28.2× energy-delay prod-
uct improvement in comparison to the dense design.

Table 2 shows the impact of dimension scalability 
on the classification accuracy of dense and sparse 
HD. The results show that both HD designs have 
high robustness to dimension reduction, however, 
the sparse HD shows higher robustness specially 
when the dimensionality goes below 4000 bits.

Area efficiency comparison
Here, we compare the area of different HD 

designs. For each design, the area depends on 

• the number of transistors involved in the imple-
mentation of the comparison array; 

• the maximum size of counter and comparator re-
quired to count and compare the hypervectors. 
The estimation made by Synopses Design Com-
piler shows that the proposed sparse design has 
34% lower area compared to the dense design. 

Finally, we compare the efficiency of the proposed 
design with the prior sparse HD design, segmented, 
proposed in [4]. To achieve the maximum accuracy, 
our sparse and segmented designs use the sparsity 
of 4% and 10%, respectively. As Table 3 shows, the 
maximum accuracy that segmented can achieve is 
92.6%, which is 2.8% less than our proposed sparse 
design. In addition, while considering the efficiency, 
our proposed design can provide 5.2× energy sav-
ings and 1.4× speedup (7.28× EDP improvement) as 
compared to the segmented design. This efficiency is 
due to higher sparsity and simpler encoding scheme 
used in our proposed sparse design.

fast and one-shot learning capabilities of 
brain-inspired HD computing make it a prime candi-
date for on-chip learning. However, the large amount 
of switching activities, imposed by dense binary 
hypervectors, increases the power consumption. We 
propose a more biologically plausible sparse binary 
representation where the number of ones is signifi-
cantly less than zeros in the hypervectors.

We design a low-power encoder which parti-
tions an input sentence into a set of letter n-grams 
and computes the related n-gram hypervectors and 

 
Table 3. Energy consumption, execution time, and sparsity of the 
segmented and our proposed sparse design for maximum accuracy 
(D = 10,000 bits).

Table 2. Classification accuracy of the proposed sparse and the 
dense HD designs with a different dimensionality (D).
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text hypervectors while maintaining the sparsity. 
We show its application for European language rec-
ognition task. Our experimental evaluation shows 
that, for the same level of classification accuracy, 
our sparse HD design provides 12.8× energy reduc-
tion and 28.2× energy-delay product improvement as 
 compared to the state-of-the-art dense HD design. 
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