
Ultra-E�icient Processing In-Memory for Data Intensive
Applications

Mohsen Imani, Saransh Gupta and Tajana Rosing
CSE Department, UC San Diego, La Jolla, CA 92093, USA

{moimani, sgupta, tajana}@ucsd.edu

ABSTRACT
Recent years have witnessed a rapid growth in the domain of Inter-
net of Things (IoT). This network of billions of devices generates
and exchanges huge amount of data. The limited cache capacity
and memory bandwidth make transferring and processing such data
on traditional CPUs and GPUs highly inefficient, both in terms of
energy consumption and delay. However, many IoT applications are
statistical at heart and can accept a part of inaccuracy in their compu-
tation. This enables the designers to reduce complexity of processing
by approximating the results for a desired accuracy. In this paper,
we propose an ultra-efficient approximate processing in-memory ar-
chitecture, called APIM, which exploits the analog characteristics of
non-volatile memories to support addition and multiplication inside
the crossbar memory, while storing the data. The proposed design
eliminates the overhead involved in transferring data to processor by
virtually bringing the processor inside memory. APIM dynamically
configures the precision of computation for each application in or-
der to tune the level of accuracy during runtime. Our experimental
evaluation running six general OpenCL applications shows that the
proposed design achieves up to 20× performance improvement and
provides 480× improvement in energy-delay product, ensuring ac-
ceptable quality of service. In exact mode, it achieves 28× energy
savings and 4.8× speed up compared to the state-of-the-art GPU
cores.

CCS CONCEPTS
•Hardware→ Emerging architectures; Non-volatile memory;

KEYWORDS
Processing in-memory, Non-volatile memory, Emerging computing
ACM Reference format:
Mohsen Imani, Saransh Gupta and Tajana Rosing. 2016. Ultra-Efficient
Processing In-Memory for Data Intensive Applications. In Proceedings of
ACM conference, Austin, Texas USA, June 2017 (DAC ’17), 6 pages.
DOI: http://dx.doi.org/10.1145/3061639.3062337

1 INTRODUCTION
Today’s IoT applications often analyze raw data by running machine
learning algorithms such as classification or neural networks in data
centers [1, 2]. Sending the entire data to cloud for processing is not
scalable and cannot guarantee the required real-time response [3].
Running data intensive workloads with large datasets on traditional
cores results in high energy consumption and slow processing speed,
majorly due to the large amount of data movement between memory
and processing units [4, 5]. The idea of near-data computing aims
to address this problem. Near-data computing puts the processing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DAC ’17, Austin, Texas USA
© 2016 Copyright held by the owner/author(s). 978-1-4503-4927-7/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3061639.3062337

units close to the main memory, which accelerates the computation
by avoiding the memory/cache bottleneck [4, 6, 7]. Although this
idea improves performance, it may consume more energy due to
the extra computing units added to the memory. A more efficient
way of addressing data movement issue is to process data within the
memory, thus improving both performance and energy efficiency [5,
8].

On the other hand, most of the algorithms running on today’s
sensors’ data are statistical in nature, and thus do not require ex-
act answers [9, 10]. Similarly, in audio and video processing we
have long exploited the fact that humans do not perceive all the
colors or sounds equally well. Approximate computing is an ef-
fective way of improving the energy and performance by trading
some accuracy. Much of the prior work seeks to exploit this fact in
order to build faster and more energy efficient systems which are
capable of responding to our needs with just good enough quality
of response [11–13]. However, most of the existing techniques pro-
vide less energy or performance efficiency due to considerable data
movement and lack of configurable accuracy.

Non-volatile memories (NVMs) are promising candidates for
data intensive in-memory computations, where the an NVM cell can
be used for both storing data and processing it [14–17]. Resistive
random access memory (RRAM) is one such memory which stores
data in form of its resistance. Owing to its low energy requirements,
high switching speeds, and scalability, RRAM can be used to develop
high capacity memories with great performance. These memories
are compatible with the current CMOS fabrication process [18]
which enables their easy integration with the existing technology.

In this paper, we propose a configurable approximate process-
ing in-memory architecture, called APIM, which supports addition
and multiplication operations inside the non-volatile RRAM-based
memory. APIM exploits the analog characteristic of the memristor
devices to enable basic bitwise computation and then, extend it to
fast and configurable addition and multiplication within memory.
This would make processing machine learning and data analysis
algorithms more efficient since most of them use addition and mul-
tiplication aggressively. We propose a blocked crossbar memory
which introduces flexibility in executing operations and facilitates
shift operations in memory. Then, we introduce a novel approach for
fast addition in memory. Finally, we design an in-memory multiplier
using the proposed memory unit and fast adder. For each application,
APIM can dynamically tune the level of approximation in order
to trade the accuracy of computation while improving energy and
performance. Our experimental evaluation over six general OpenCL
applications shows that the proposed design improves the perfor-
mance by 20× and provides 480× improvement in energy-delay
product while ensuring less than 10% average relative error.

2 RELATED WORK AND BACKGROUND
Processing in-memory (PIM) can accelerate computation by re-
ducing the overhead of data movement [5, 8]. Early PIM designs
integrate high performance CMOS logic and memory on the same
die. They predominantly designed a custom processing unit next
to the sense amplifiers of main memory to support basic bitwise



b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

in1 in2 inn out

V0 GND

in1 in2 inn

out

in1

in2

inn

out

GND

in1 in2 inn

V0

out

V0

V0

A2[n:1]A1[n:1] A4[n:1]A3[n:1] A6[n:1]A5[n:1] A8[n:1]A7[n:1] A9[n:1]

+

+

+

+ +

+

1-bit FA

S4[n] C4[n]

S3[1]

1-bit FA

S4[1] C4[1]

C3[1] C2[1]

+

S C

n-bit Adders

(n+1)-bit Adders

(n+2)-bit Adder

(n+3)-bit Adder

M1,1 M1,2 M1,n

Column Decoder and Voltage Controllers

M2,n-1

Mk,1 Mk,2 Mk,n

M2,2M2,1 M2,n

M1,n-1

Mk,n-1

Data Block 1

Processing 

Block 1

Configurable Interconnect

Data Block 2

Processing 

Block 2

Processing 

Block n

Column Decoder and Controller

Sense Amplifiers

R
o

w
 D

ec
o

d
e
r
 a

n
d

 C
o

n
tr

o
ll

e
r

M2 M1

R1>x

M3P2 P1

Current 

Mirror

Vdd

R2>2
MAJ

Bitwise

M4

MAJ/F1

F1

F
1

M
A

J

MUX

Carry Save 

Adder 

Bitwise Read

Configurable Interconnect

Controller

C2n-2C2n-1

R2>2
C 1C 2n

Majority

P1P2n-1P2n P2n-2

M
2

0
M

2
n

-2
M

2
n

-1

M
1

0
M

1
n

-2
M

1
n

-1

SA

M2x=1

Copy M1

N
ex

t b
it

S11C11

Carry Save 

Adder

S12C12

Carry Save 

Adder

C1h C1h

Carry Save 

Adder 

S21C21

Carry Save 

Adder

C2[2h/3]

Configurable Interconnect

Carry Save 

Adder 

ST1CT1

S2[2h/3]

S2n-2

C 2n-2

S0

C0

S2n-1

C 2n-1

(b) Partial Product 

Generation

(d) Final Product Generation

(c) Fast Adder

(a) APIM Overall Structure

Crossbar 

Memory

b0

b1

b2

b3

b4 b5 b6

b'0 b'1 b'2 b'3

s0

s1

s2

s3

Different interconnect modes 

(a) (b)

S
A

S
A

S
A

S
A

Propagation Stage

Partial Product 0

Partial Product 1

SASASA

a1 a0a2a3

b
1
'

b
1
'

b
1
'

b
1
'

1-bit FA

S[n]

1-bit FA

S[1]S[n+1]

S3[n] C3[n] C2[n]

Configurable Interconnect Configurable Interconnect

(a) (b) 

Configurable Interconnect

Figure 1: (a) The overall structure of APIM consisting of several data and processing blocks. (b) the APIM controller and parallel
product generator. (c) Fast adder three structure consisting of Carry save adder and configurable interconnects. (d) Final product
generator to ripple the carry bits of tree structure.

operations. However, to support other advance functionality (e.g.
addition, multiplication), they added dedicated CMOS-based pro-
cessing cores, making the manufacturing process complicated and
costly.

High density, low-power consumption, and CMOS-compatibility
of emerging non-volatile memories (NVMs), in particular memristor
devices, make them appropriate candidates for both memory and
computing unit [14, 15, 19, 20]. Many logic families have been
proposed for computation inside memristive crossbar. Some of
them implement logic purely in memory such as stateful implication
logic [21, 22], and Memristor Aided loGIC (MAGIC) [23].The work
in [24] presents schemes for addition in memristive crossbar memory.
The direct application of these schemes in data intensive processing
is limited largely due to the linear dependency of latency of execution
on the size of data. While [25] presents a very fast adder, the area
overhead involved in arrayed addition grows significantly for data
intensive workloads.

We use MAGIC NOR [23] to execute logic functions in memory
due to its simplicity and independence of execution from data in
memory. An execution voltage, V0, is applied to the bitlines of the
inputs (in case of NOR in a row) or wordlines of the outputs (in case
of NOR in a column) in order to evaluate NOR, while the bitlines of the
outputs (NOR in a row) or wordlines of the inputs (NOR in a column)
are grounded. The work in [24] extends this idea to implement adder
in a crossbar. It executes a pattern of voltages in order to evaluate
sum (S) and carry (Cout ) bits of 1-bit full addition (inputs being
A,B,C) given by

Cout = ((A+B)′ + (B+C)′ + (C+A)′)′. (1a)

S = (((A′ +B′ +C′)′ + ((A+B+C)′ +Cout )
′)′)′. (1b)

This design takes 12N + 1 cycles to add two N-bit numbers. We
define a cycle time (= 1.1ns) as the time taken to implement one
MAGIC NOR operation.

In contract, we propose a novel processing in-memory architec-
ture which supports fast and efficient addition and multiplication
operations. Our design supports approximation and configures it
dynamically depending upon the requirements of different applica-
tions.

3 PROPOSED APIM
This section presents the design flow and techniques used to exe-
cute addition and multiplication in memory. Figure 1(a) shows the
memory unit. It is a simple crossbar memory divided into different
blocks further explained in Section 3.1. Section 3.2 proposes a fast
adder, Figure 1(c), which uses a tree structure in the memory unit
to add large number of operands with minimum delay. Section 3.3
describes a multiplier, Figure 1(b)-(d), which utilises the fast adder
along with the modified sense amplifiers of the memory unit to
obtain product in an efficient manner. We also propose approxima-
tion techniques in Section 3.4 which speed up multiplication while
ensuring high accuracy.

3.1 APIM Architectural Overview
A typical crossbar memory is an array of unit memory cells. In case
of RRAM, these cells are made of resistive switching elements such
as memristors. Each cell in the memory is accessed by activating
the corresponding wordline and bitline. MAGIC makes execution
of operations in a crossbar memory simple. It also allows easy
copying of data provided the source and destination are in the same
column/row. While being acceptable in many cases, this memory
structure limits the performance of instructions which involve a lot of
shifting and asymmetric movement of data. One such instruction is
multiplication where the multiplicand is shifted and added. Multiple
copy operations can emulate a shift operation. However, such an
approach is impractical when the number to be shifted is large since
it requires shifting each and every bit individually. The problem is
aggravated when multiple such numbers are to be shifted.

We hence propose the use of a blocked memory structure as
shown in Figure 1(a). The crossbar is divided into blocks. Any
new data which is loaded into the memory is stored in the data
block. Whenever there is a request to process data, it is copied to
the processing block and computation is done. The two blocks are
structurally the same and can be used interchangeably. These blocks
are connected by configurable interconnects. The interconnects
support shift operations inherently such that ith bitline of one block
can be connected to (i+ j)th bitline of another block. The availability



of interconnects allows the memory to shift data while copying it
from one block to another without introducing any latency overhead.
This makes shifting an efficient operation since the entire string of
data can be shifted at once, unlike shifting each bit individually.

3.2 Fast Addition in APIM
The design in [24] is good for small numbers but as the length of
numbers increases, time taken increases linearly. A N×M multipli-
cation requires addition of M partial products, each of size N bits, to
generate a (N +M)-bit product. This takes (M−1) · (12(N−1)+1)
cycles to obtain the final product.

In order to optimize latency of addition, we propose a fast adder
for memristive memories. Our design is based on the idea of carry
save addition (CSA) and adapts it for in-memory computation. Fig-
ure 2(a) shows carry save addition. Here, S1[n] and C1[n] are the sum
and carry-out bits, respectively of 1-bit addition of A1[n], A2[n], and
A3[n]. The 1-bit adders do not propagate the carry bit and generate
two outputs. This makes the n additions independent of each other.
The proposed adder exploits this property of CSA. Since, MAGIC
execution scheme doesn’t depend upon the operands of addition,
multiple addition operations can execute in parallel if the inputs
are mapped correctly. The design utilises the proposed memory
unit, which supports shifting operations, to implement CSA like
behaviour. The latency of this 3:2 reduction, 3 inputs to 2 outputs,
is same as that of a 1-bit addition (i.e., 13 cycles) irrespective of
the size of operands. The two numbers can then be added serially,
consuming 12N +1 cycles. This totals to 12N +14 cycles while the
previous adder would take 24N−22 cycles. The difference increases
linearly with the size of inputs.

We use a Wallace-tree inspired structure leveraging the fast 3:2
reduction of our new adder design, as shown in Figure 2(b), to add
multiple numbers (9 n-bit numbers in this case). At every stage of
execution, the available addends are divided in groups of three. The
addends are then added using a separate adder (as described above)
for each group, generating two outputs per group. The additions
in the same stage of execution are independent and can occur in
parallel to each other. Our configurable interconnect arranges the
outputs of this stage in groups of three for addition in the next stage.
This structure takes a total of four stages for 9:2 reduction, having
the same delay as that of four 1-bit additions. At the end of the
tree structure we are left with two (N + 3)-bit numbers which can
then be added serially. The tree-structured addition reduces the
delay substantially as carry propagation happens only in the last
stage, unlike the conventional approach where carry is propagated
at every step of addition. Although this speed up comes at the cost
of increased energy consumption and number of writes in memory,
it is acceptable because the latency is reduced by large margins as
shown in Section 4.

3.3 Multiplication in APIM
The process of multiplication can be divided into three stages, partial
product generation, fast addition, and final product generation as
shown in Figure 1. The partial product generation stage creates
partial products of a N×N multiplication. These partial products can
then be added serially (inefficient) or by the fast adder introduced
in Section 3.2. The fast addition reduces N numbers to 2. The
final product generation stage adds two numbers generated by the
previous stage and outputs the product of N×N multiplication.

A partial product is the result of ANDing the multiplicand (M1)
with a bit of the multiplier (M2). Hence, N ×N multiplication
generates N (size of M2) partial products of size N-bits (size of
M1). AND operation can be implemented as a series of three NOR

b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

b
0
'

b
2
'

b
3
'

in1 in2 inn out

V0 GND

in1 in2 inn

out

in1

in2

inn

out

GND

in1 in2 inn

V0

out

V0

V0

A2[n:1]A1[n:1] A4[n:1]A3[n:1] A6[n:1]A5[n:1] A8[n:1]A7[n:1] A9[n:1]

+

+

+

+ +

+

1-bit FA

S4[n] C4[n]

S3[1]

1-bit FA

S4[1] C4[1]

C3[1] C2[1]

+

S C

n-bit Adders

(n+1)-bit Adders

(n+2)-bit Adder

(n+3)-bit Adder

M1,1 M1,2 M1,n

Column Decoder and Voltage Controllers

M2,n-1

Mk,1 Mk,2 Mk,n

M2,2M2,1 M2,n

M1,n-1

Mk,n-1

Data Block 1

Processing 

Block 1

Configurable Interconnect

Data Block 2

Processing 

Block 2

Processing 

Block n

Column Decoder and Controller

Sense Amplifiers

R
o

w
 D

ec
o

d
e
r
 a

n
d

 C
o

n
tr

o
ll

e
r

M2 M1

R1>x

M3P2 P1

Current 

Mirror

Vdd

R2>2
MAJ

Bitwise

M4

MAJ/F1

F1

F
1

M
A

J

MUX

Carry Save 

Adder 

Bitwise Read

Configurable Interconnect

Controller

C2n-2C2n-1

R2>2
C 1C 2n

Majority

P1P2n-1P2n P2n-2

M
2

0
M

2
n

-2
M

2
n

-1

M
1

0
M

1
n

-2
M

1
n

-1

SA

M2x=1

Copy M1

N
ex

t b
it

S11C11

Carry Save 

Adder

S12C12

Carry Save 

Adder

C1h C1h

Carry Save 

Adder 

S21C21

Carry Save 

Adder

C2[2h/3]

Configurable Interconnect

Carry Save 

Adder 

ST1CT1

S2[2h/3]

S2n-2

C 2n-2

S0

C0

S2n-1

C 2n-1

(b) Partial Product 

Generation

(d) Final Product Generation

(c) Fast Adder

(a) APIM Overall Structure

Crossbar 

Memory

b0

b1

b2

b3

b4 b5 b6

b'0 b'1 b'2 b'3

s0

s1

s2

s3

Different interconnect modes 

(a) (b)

S
A

S
A

S
A

S
A

Propagation Stage

Partial Product 0

Partial Product 1

SASASA

a1 a0a2a3

b
1
'

b
1
'

b
1
'

b
1
'

1-bit FA

S[n]

1-bit FA

S[1]S[n+1]

S3[n] C3[n] C2[n]

Configurable Interconnect Configurable Interconnect

(a) (b) 

Configurable Interconnect

Figure 2: (a) Carry save addition (b) Tree structured addition
of 9 n-bit numbers
operations as given by,

F = AND (A,B) = NOR (NOR(A), NOR(B)) (2)

This requires three cycles given that the inputs A & B and output
F are in the same row or column. In the case of in-memory com-
putation, even if we assume that the numbers to be multiplied are
located adjacent to each other, we would require an empty crossbar
row/column of length NN which is quite large even for N = 16. This
would be expensive not only in terms of area but also in latency,
requiring 3NN cycles.

We propose the use of sense amplifiers to develop a faster partial
product generator as shown in Figure 1(b). In order to avoid the
time and area overhead involved in transposing and creating multiple
copies of multiplier, we read-out the multiplier. The design exploits
the fact that the partial product is the multiplicand itself if multiplier
bit is ’1’ and 0 otherwise. M2 is read bit-wise using the sense
amplifier. If the read bit is ’1’, M1 is copied, while nothing is done
when the bit is ’0’. We achieve this by modifying the multiplexer
in the controller, incorporating the sensed bit in the select signals.
In this way, we avoid writing data when the bit is zero, thus saving
energy. A copy operation is equivalent to two successive NOT
operations. This result is used for all successive copy operations,
limiting the worst case delay of copying to N +1 cycles. The actual
delay would vary depending upon the number of ’1s’ in M2.

Although this is a huge improvement in latency from the initial
design, we have not yet considered the cost of shifting the partial
products for add operation. Shift operation in a normal memory
crossbar can only be done bitwise, which would be quite large given
the number and size of operands to be shifted. The blocked memory
architecture introduced in Section 3.1 proves advantageous in this
scenario. If the above operations are performed in a blocked memory
crossbar, the latency of shifting would actually reduce to zero. Shift
operation can be clubbed with copy operation and hence, shifted
partial products can be obtained in the processing block at no extra
delay.

The fast adder discussed in Section 3.2 reduces the generated
partial products to 2, owing to its N:2 reduction. Since a step in
the fast adder involves parallel additions, it requires that the three
addends of a 3 : 2 adder are present in the same columns (rows) and
all such groups in a step are present in the same rows (columns).
Interestingly, arranging the partial products in this manner involves
no added latency as this arrangement can be done while shifting and
copying the data in the partial product generation stage. Instead of
writing the partial products one below the other, the interconnects
are set such that the partial products are arranged in the required
way. After the first step of 3 : 2 reduction, we again need to arrange
the intermediate results into groups of three. This can be done by
moving these results to the data block, performing the next 3 : 2



a1' a0'a2'a3'

b
1
'

b
0
'

b
2
'

b
3
'

b
1
'

b
0
'

b
2
'

b
3
'

b
1
'

b
0
'

b
2
'

b
3
'

b
1
'

b
0
'

b
2
'

b
3
'

in1 in2 inn out

V0 GND

in1 in2 inn

out

in1

in2

inn

out

GND

in1 in2 inn

V0

out

V0

V0

A2[n:1]A1[n:1] A4[n:1]A3[n:1] A6[n:1]A5[n:1] A8[n:1]A7[n:1] A9[n:1]

+

+

+

+ +

+
A1[n]

1-bit FA

S1[n] C1[n]

A2[n] A3[n] A1[1]

1-bit FA

S1[1] C1[1]

A2[1] A3[1]

+

S C

n-bit Adders

(n+1)-bit Adders

(n+2)-bit Adder

(n+3)-bit Adder

M1,1 M1,2 M1,n

Column Decoder and Voltage Controllers

M2,n-1

Mk,1 Mk,2 Mk,n

M2,2M2,1 M2,n

M1,n-1

Mk,n-1

Data Block 1

Processing 

Block 1

Interconnect

Data Block 2

Processing 

Block 2

Interconnect

Processing 

Block n

Interconnect

Column Decoder and Controller

Sense Amplifiers

R
o

w
 D

ec
o

d
e
r
 a

n
d

 C
o

n
tr

o
ll

e
r

M2 M1

R1>x

M3P2 P1

Current 

Mirror

Vdd

R2>2
MAJ

Bitwise

M4

MAJ/F1

F1

F
1

M
A

J

MUX

Carry Save 

Adder 

Bitwise Read

Interconnect

Controller Interconnect

C2n-2C2n-1

R2>2
C 1C 2n

MAJ

P1P2n-1P2n P2n-2

M
2

0
M

2
n

-2
M

2
n

-1

M
1

0
M

1
n

-2
M

1
n

-1

SA

M2x=1

Copy M1

N
e
x

t b
it

Shift
S11C11

Carry Save 

Adder
S12C12

Carry Save 

Adder
C1h C1h

Carry Save 

Adder 
S21C21

Carry Save 

Adder
C2[2h/3]

Interconnect

Carry Save 

Adder 

ST1CT1

S2[2h/3]

S2n-2

SASA

C 2n-2

SA

S0

C0

S2n-1

C 2n-1

(b) Partial Product 

Generation (d) Final Product Generation

(c) Fast Adder

(a) APIM Overall Structure

Crossbar 

Memory

b0

b1

b2

b3

b4 b5 b6

b'0 b'1 b'2 b'3

s0

s1

s2

s3

Different interconnect modes 

(a) (b)

S
A

S
A

S
A

S
A

Final Product Generator

Partial Product 0

Partial Product 1

We need to open 

RCA block here

Figure 3: The circuit of (a) an interconnect (b) a sense amplifier.
reduction there (blocks being functionally the same), and coming
back to the current block for the following reduction. In this way,
N : 2 reduction can be efficiently executed by utilising only 2 blocks
of the memory, toggling between them at every step. However, if
the data block is specifically reserved for storing data and bars logic
execution, a 3-level memory (with 2 processing blocks per data
block) can be used. The reduction is done until only 2 addends
remain.

The major advantage of reduction addition is that the time taken
by this adder is independent of the size of the operands i.e., N×32
multiplication takes the same time in this stage for any value of N.
It varies only by the number of operands to be added. Moreover,
since we only generate a partial product when the multiplier bits
are 1, the actual number of operands to be added is quite small. For
instance, with a random input data, there would be only 16 additions
on average for 32×32 multiplication. The final product generation
stage adds the two outputs of the previous stage to generate the
required product.

Figure 3(a) shows the configurable interconnect used in our de-
sign. It can be visualized as a collection of switches, similar to
a barrel shifter, which connects the bitlines of the two blocks. bn
and b′n are bitlines coming into and going out of the interconnect
respectively. The select signals, sn control the amount of shift. These
interconnects can connect cells with different bitlines together. For
example, they can connect bn,bn+1,bn+2, ... incoming bitlines to, say,
b′n+4,b

′
n+5,b

′
n+6, ... outgoing bitlines, respectively, hence enabling

the flow of current between the cells on different bitlines of blocks.
This kind of a structure makes shifting operations energy efficient
and fast, having the latency same as that of a normal copy operation.
It also allows for inter-column MAGIC NOR operations between the
two blocks. If inputs are stored on nth bitline of one block, the output
of NOR operation can be stored on, say, (n+4)th bitline of another
block. This can be extended to multiple NOR operations in parallel.
The shift select signals, sn, are controlled by the memory controller
present at the periphery of memory unit. It is important to note that
all of these blocks still share the same row and column controllers
and decoders. So, the area and logic overhead introduced by the
proposed memory unit is restricted to the interconnect circuit and its
control logic.

3.4 APIM Approximation
The individual additions in the final stage cannot occur in parallel
since they require the propagation of carry in order to generate the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−16

10
−20

10
−15

10
−10

10
−5

10
0

10
5

EDP (J.s × 10
−16

)

%
 E

rr
o
r 

(L
o
g
 S

ca
le

)

 

 

Last Stage Approximation

First Stage Approximation

Low Accuracy

Computation High Accurate 

Computation

Figure 4: Error and EDP comparison of the two approximation
approaches.
final answer. The two addends in the final stage of APIM multi-
plication are of size 2N each. The conventional approach requires
13 · 2N cycles to compute the result. This latency is dominant as
compared to the previous stages of multiplication, making the last
stage a bottleneck of the entire process.

However, we can dramatically speed it up if a fully accurate result
is not desired. This is the case with many highly data intensive
applications which tolerate some inaccuracy as long as it is within
the prescribed limits. One approach is to mask some of the LSBs
of M2, reducing the number of computations. The other approach
approximates the sum bits in the last stage from the accurately
generated carry bits and saves the delay involved in calculation of
the bit. We use the second approach in the evaluation of our design.

In the first approach, the number of masked bits depends upon the
amount of accuracy desired. Masking the bits of the multiplier effec-
tively reduces the number of partial products to be added because
we don’t generate partial products when the multiplier bit is 0. For
example, masking 8 LSBs of M2 in the first stage reduces a 32×32
multiplication to 32× 24. Hence, this method of approximation
results in a direct reduction in delay and energy consumption of mul-
tiplication. It comes majorly due to the reduction in computation in
the fast adder stage. However, since this approach masks the bits in
the initial stage itself, the error propagates through the entire process,
resulting in huge errors in some cases. This makes it unsuitable for
an application demanding very high accuracy.

In the second approach, our design exploits the fact that the sum
bit (S) of an 1-bit addition is the complement of the generated carry
bit (Cout ) except for two combinations of inputs (i.e.,(A,B,C) = (0, 0,
0) and (1, 1, 1)) [26]. It evaluates Cout accurately (hence, preventing
the propagation of error) and then approximates S. Our design
uses a modified sense amplifier (SA). It supports basic memory
operation along with MAJ (majority) function as shown in Figure 3(b).
The carry generated (Cout ) as a result of addition of three input
bits (A,B,Cin) is MAJ(A,B,C) i.e., AB+BC+CA. Our circuit level
evaluation shows that just reading the inputs from memory takes
about 0.3ns, while our design needs 0.6ns to calculate majority
and compute Cout resulting in an effective delay of less than 1 cycle.
One additional cycle is needed to write the computed Cout to the
memory. It acts as an input to the next 1-bit addition, the output
of SA is written such that it is in the same column as that of the
next two inputs, saving the trouble and cost of copying it. Since
the carry bit is propagated, these 1-bit additions cannot occur in
parallel to each other. The computation of Cout takes 2 ·2N cycles.
All S bits can then be approximated by just inverting the Cout bits,
which costs only 1 cycle and can all be done at the same time. This
technique reduces the latency from 13 ·2N (time taken to add two
2N-bit numbers) cycles to 2 ·2N+1 cycles. This improvement comes
with a significant cost of 25% error (2 out of 8 cases) for a random
input data.



32M 64M 128M 256M 512M 1G
0

10

20

30

40

Dataset Size

E
n

er
g
y
 I

m
p

ro
v
em

en
t 

(G
P

U
=

1
)

0

2

4

6

8

S
p

ee
d

 u
p

 (
G

P
U

=
1
)

(a) Sobel

32M 64M 128M 256M 512M 1G
0

10

20

30

40

Dataset Size

E
n

er
g
y
 I

m
p

ro
v
em

en
t 

(G
P

U
=

1
)

0

2

4

6

8

S
p

ee
d

 u
p

 (
G

P
U

=
1
)

(b) Robert

32M 64M 128M 256M 512M 1G
0

10

20

30

40

Dataset Size

E
n

er
g
y
 I

m
p

ro
v
em

en
t 

(G
P

U
=

1
)

0

2

4

6

8

S
p

ee
d

 u
p

 (
G

P
U

=
1
)

(c) FFT

32M 64M 128M 256M 512M 1G
0

10

20

30

40

Dataset Size

E
n

er
g
y
 I

m
p

ro
v
em

en
t 

(G
P

U
=

1
)

0

2

4

6

8

S
p

ee
d

 u
p

 (
G

P
U

=
1
)

(d) DwtHaar1D
Figure 5: Energy consumption and speedup of exact APIM normalized to GPU vs different dataset sizes.

The accuracy can be improved substantially by approximating
just a part of the final product while accurately calculating the rest of
the product. The design improves accuracy by dividing the product
into two groups of size k and m bits such that k+m = 2N. The k
bits are calculated using the conventional approach which consumes
13k cycles and produces k accurate bits in the product. On the other
hand, m bits are approximated using the technique described above,
which takes a total of 2m+ 1 cycles. This increases the accuracy
since the k accurate bits are generally the most significant bits and
any error in the m least significant bits has less effect on the result,
as shown in Section 4.3. The proposed technique implements the
final stage with a latency of 13k+ 2m+ 1 cycles. The appropriate
values of k and m depend upon the application in hand. Section 4.3
talks about different applications and selecting these values in order
to obtain acceptable results.

While approximation in the last stage reduces the latency, it is
still slower that the first approach in which approximation is done in
the first stage. The first approach is more energy efficient too since it
reduces the size of multiplication and uses less resources. However,
unlike the first approach, second approach introduces error only in
the final stage of the process. This approach can thus achieve very
low error rates making it suitable for applications requiring precise
results. Figure 4 presents a comparison between the two approaches
for 32×32 multiplication. While, approximation in the first stage
is convenient for error tolerant applications, approximation in the
last stage can guarantee very high accuracies for similar EDPs. For
example, for 32×32 multiplication and an EDP of 1.4×10−16, the
error rate for the second approach is less by 5 orders of magnitude
as compared to the first approach.

4 RESULTS
4.1 Experimental Setup
We compare the efficiency of the proposed APIM design with state-
of-the-art processor AMD Radeon R9 390 GPU with 8GB memory.
In order to avoid the disk communication in the comparison, all the
data used in the experiments is preloaded into 64GB, 2.1GHz DDR4
DIMMs. We used Hioki 3334 power meter to measure the power
consumption of GPU. We implement the APIM functionality by
changing the multi2sim [27], cycle-accurate CPU-GPU processor.
Performance and energy consumption of proposed hardware are
obtained from circuit level simulations for a 45nm CMOS process
technology using Cadence Virtuoso. We use VTEAM memristor
model [28] for our memory design simulation with RON and ROFF
of 10kΩ and 10MΩ respectively.

We compare the efficiency of APIM and GPU by running six
general OpenCL applications including: Sobel, Robert, Fast Fourier
transform (FFT), DwHaar1D, Sharpen and Quasi Random. For im-
age processing we use random images from Caltech 101 [29] library,
while for non-image processing applications inputs are generated

randomly. Majority of these applications consists of additions and
multiplications. The other common operations such as square root
has been approximated by these two functions in OpenCL code. To
evaluate the computation accuracy in approximate mode, our frame-
work compares the approximate output file of each application with
the golden output from calculating exactly. For image processing ap-
plications, we accept 30dB peak signal-to-noise ratio as an accuracy
metric. For other applications, the acceptable accuracy is defined
by having less than 10% average relative error. To find a proper
level of accuracy, our framework computes APIM at the maximum
level of approximation (32 relax bits). In case of large inaccuracy,
it increases the level of accuracy in 4-bit steps until ensuring the
acceptable quality of service.

4.2 Exact APIM & Dataset Size
Figure 5 shows the energy savings and performance improvements
of running applications on APIM exact, normalized to GPU energy
and performance. For each application, the size of input dataset
increases from 1Kb to 1GB. In traditional cores, the energy and
performance of computation consists of two terms: computation
and data movement. In small dataset (˜KB), the computation cost
is dominant, while running applications with large datasets (˜GB),
the energy and performance of consumption are bound by the data
movement rather than computation cost. This data movement is due
to small cache size of transitional core which increases the number
of cache miss. Consecutively, this degrades the energy consumption
and performance of data movement between the memory and caches.
In addition, large number of cache misses, significantly slows down
the computation in traditional cores. In contrast, in proposed APIM
architecture the dataset is already stored in the memory and com-
putation is major cost. Therefore, regardless of dataset size (the
dataset can fit on APIM), the APIM energy and performance of
increases linearly by the dataset size. Although the memory-based
computation in the APIM is slower than transitional CMOS-based
computation (i.e. floating point units in GPU), in processing the
large dataset, the APIM works significantly faster than GPU. In
terms of energy, the memory-based operations in APIM is more
energy efficient than GPU. Our evaluation shows that for most appli-
cations using datasets larger than 200MB (which is true for many
IoT applications), APIM is much faster and more energy efficient
than GPU. With 1GB dataset, the APIM design can achieve 28×
energy savings, 4.8× performance improvement as compared to
GPU architecture.

Figure 6 compares the performance efficiency of the proposed
design with the state-of-the-art prior work [24, 25]. The work in [24]
computes addition in-memory using MAGIC logic family, while the
work in [25] uses the complementary resistive switching to perform
addition inside the crossbar memory. Our evaluation comparing
the energy and performance of addition of N operands of length
N bits each shows that the APIM can achieve at least 2× speed



Table 1: Quality of loss and EDP improvement of the proposed APIM compared to GPU in different level of approximation.

Applications 0 bit 4 bits 8 bits 16 bits 24 bits 32 bits
EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL EDP Imp. QoL

Sobel 94× 0% 164× 1.3% 235× 3.1% 305× 6.9% 376× 11.4% 446× 15.6%
Robert 177× 0% 311× 1.2% 444× 2.9% 577× 4.8% 711× 6.8% 844× 9.1%
FFT 203× 0% 356× 2.2% 509× 3.7% 662× 5.8% 815× 8.6% 968× 13.5%

DwHaar1D 90× 0% 157× 0.9% 225× 2.6% 293× 5.7% 361× 7.9% 428× 10.6%
Sharpen 104× 0% 149× 3.4% 206× 5.1% 273× 8.1% 340× 12.5% 410× 18.4%
QuasiR 69× 0% 127× 2.1% 198× 3.5% 258× 5.8% 310× 9.3% 386× 15.7%

(����a1�	

1�	
asuu[uP

18	Ba�-d�
�BC1����a�-e�
�BC1����a�-e�

�
�
�

�
��

a�
 a
B

!
�"

�#

]3]

]3-

]3d

]3e

������a� a0'�#a@�9

e N ]- ]4 -3 -e -N d-

Figure 6: Performance comparison of the proposed design with
previous work for addition of N operands, each sized N bits
up compared to previous designs in exact mode. APIM can be at
least 6× faster with 99.9% accuracy. The proposed design is even
better since the calculations for previous work do not include the
latency involved in shift operations. This improvement comes at
the expense of the overhead of interconnect circuitry and its control
logic. However, the next best adder, i.e., the PC-Adder [25] uses
multiple arrays each having different wordline and bitline controllers,
introducing a lot of area overhead. This overhead is not present in
our design since all the blocks share the same controllers.

4.3 Approximate APIM
Table 1 shows the energy consumption and performance of the
applications running on APIM in different approximation level. As
we explained in Section 3.4, APIM approximates m least significant
bits of the product in the final product generation stage. The value
of m has an important impact on the computation accuracy and
performance of multiplication in APIM design. As Table 1 shows,
large number of approximate LSBs (m) significantly improve energy-
delay product of APIM, at the expense of increased computation
inaccuracy. Similarly, small m makes the computation more accurate
with small benefit. We observed that different applications satisfy the
required accuracy for different values of m. Therefore, our design
detects the application at runtime and then sets the pre-calculated
value of m that is obtained offline to ensure the acceptable quality
of computation. Using this adaptive design, our design can achieve
480× energy-delay product improvement as compared to APIM in
the exact mode.

5 CONCLUSION
In this paper, we propose a configurable processing in-memory archi-
tecture which enables addition and multiplication operations inside
the memory, while storing data. The design addresses the ineffi-
ciency involved in moving data by enabling computations within
memory. The performance of the design is further enhanced by
approximating results with high accuracies. Our evaluation shows
that increasing the dataset size significantly improves the energy
efficiency of APIM. In addition, by enabling tunable approximation
during the runtime, our design can tune the level of approximation
to trade energy/performance with accuracy. Our evaluation running

four OpenCL application shows that in approximate mode (exact
mode), the APIM can achieve up to 480× (123×) energy-delay
product improvement compared to recent GPU architecture ensuring
the acceptable quality of service.

6 ACKNOWLEDGMENT
This work was supported by NSF grant #1527034 and Jacobs School
of Engineering UCSD Powell Fellowship.

REFERENCES
[1] J. Gubbi et al., “Internet of things (IoT): A vision, architectural elements, and

future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–
1660, 2013.

[2] M. Samragh et al., “Looknn: Neural network with no multiplication,” in
IEEE/ACM DATE, 2017.

[3] K. Hwang et al., Distributed and cloud computing: from parallel processing to
the internet of things. Morgan Kaufmann, 2013.

[4] R. Balasubramonian et al., “Near-data processing: Insights from a micro-46
workshop,” Microarchitecture, vol. 34, no. 4, pp. 36–42, 2014.

[5] G. Loh et al., “A processing-in-memory taxonomy and a case for studying fixed-
function pim,” in WoNDP, 2013.

[6] M. Imani et al., “Mpim: Multi-purpose in-memory processing using configurable
resistive memory,” in IEEE ASP-DAC, pp. 757–763, IEEE, 2017.

[7] S. Pugsley et al., “Comparing implementations of near-data computing with in-
memory mapreduce workloads,” Microarchitecture, vol. 34, no. 4, pp. 44–52,
2014.

[8] A. M. Aly et al., “M3: Stream processing on main-memory mapreduce,” in ICDE,
pp. 1253–1256, IEEE, 2012.

[9] J. Han et al., “Approximate computing: An emerging paradigm for energy-
efficient design,” in ETS, pp. 1–6, IEEE, 2013.

[10] M. Imani et al., “Efficient neural network acceleration on gpgpu using content
addressable memory,” in IEEE/ACM DATE, 2017.

[11] M. Imani et al., “Resistive configurable associative memory for approximate
computing,” in DATE, pp. 1327–1332, IEEE, 2016.

[12] V. Gupta et al., “Impact: imprecise adders for low-power approximate computing,”
in ISLPED, pp. 409–414, IEEE, 2011.

[13] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge tcam for
approximate computing,” in IEEE/ACM DATE, pp. 373–378, IEEE, 2016.

[14] Q. Guo et al., “Ac-dimm: associative computing with stt-mram,” in ISCA, vol. 41,
pp. 189–200, ACM, 2013.

[15] Q. Guo et al., “A resistive tcam accelerator for data-intensive computing,” in
Microarchitecture, pp. 339–350, ACM, 2011.

[16] M. Imani et al., “Exploring hyperdimensional associative memory,” in IEEE
HPCA, IEEE, 2017.

[17] X. Yin et al., “Design and benchmarking of ferroelectric fet based tcam,” in
IEEE/ACM DATE, IEEE, 2017.

[18] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit capable of
self-programming,” PNAS, vol. 106, no. 6, pp. 1699–1703, 2009.

[19] M. Imani et al., “Acam: Approximate computing based on adaptive associative
memory with online learning,” in IEEE/ACM ISLPED, pp. 162–167, 2016.

[20] L. Yavits et al., “Resistive associative processor,” IEEE Computer Architecture
Letters, vol. 14, no. 2, pp. 148–151, 2015.

[21] J. Borghetti et al., “Memristive switches enable stateful logic operations via
material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[22] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Memristor-based material implication (IMPLY) logic: design principles and
methodologies,” TVLSI, vol. 22, no. 10, pp. 2054–2066, 2014.

[23] S. Kvatinsky et al., “MAGIC – memristor-aided logic,” TCAS II, vol. 61, no. 11,
pp. 895–899, 2014.

[24] N. Talati et al., “Logic design within memristive memories using memristor-aided
loGIC (MAGIC),” IEEE TNano, vol. 15, pp. 635–650, jul 2016.

[25] A. Siemon et al., “A complementary resistive switch-based crossbar array adder,”
JETCAS, vol. 5, no. 1, pp. 64–74, 2015.

[26] V. Gupta et al., “Low-power digital signal processing using approximate adders,”
TCAD, vol. 32, no. 1, pp. 124–137, 2013.

[27] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu computing,” in
PACT, pp. 335–344, ACM, 2012.

[28] S. Kvatinsky et al., “Vteam: a general model for voltage-controlled memristors,”
TCAS II, vol. 62, no. 8, pp. 786–790, 2015.

[29] “Caltech Library.” http://www.vision.caltech.edu/Image Datasets/Caltech101/.

http://www.vision.caltech.edu/Image_Datasets/Caltech101/


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 18.00 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20160112132206
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     18.0000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     5
     6
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     6
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



