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ABSTRACT
Many applications, such as machine learning and data sensing are
statistical in nature and can tolerate some level of inaccuracy in their
computation. Approximate computation is a viable method to save
energy and increase performance by trading energy for accuracy.
There are a number of proposed approximate solutions, however,
they are limited to a small range of applications because they cannot
control the error rate of their output. In this paper, we propose a
novel approximate floating point multiplier, called CFPU, which
significantly reduces energy and improves performance of multipli-
cation at the expense of accuracy. Our design approximately models
multiplication by replacing the most costly step of the operation
with a lower energy alternative. In order to tune the level of approxi-
mation, CFPU dynamically identifies the inputs which will produce
the largest approximation error and processes them in precise CFPU
mode. We showed that our CFPU can outperforms a standard FPU
when at least 4% of multiplications are performed in approximate
mode. In our tested applications this percentage of multiplications
is substantially higher, leading to significant energy savings. Our
experimental evaluation on AMD Southern Island GPU shows that
replacing the proposed CFPU with traditional FPUs results in 77%
energy savings and 3.5× energy-delay product improvement over
eight general OpenCL applications while providing acceptable qual-
ity of service. In addition, for the same level of accuracy, the CFPU
provides 2.4× energy-delay product improvement compared to state-
of-the-art approximate multipliers.
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1 INTRODUCTION
In 2015, the number of smart devices around the world exceeded 25
billion. This number is expected to double by 2020 [1, 2]. Many of
these devices have batteries with strict power constraints, so the need
for systems that can efficiently handle the computing requirements
of data-intensive workloads is undeniable [3, 4]. Running machine
learning algorithms or multimedia applications on general purpose
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processors, e.g. GPUs, CPUs, and FPGAs, results in large energy
consumption and performance inefficiencies. Many of these appli-
cations do not need highly accurate computation, so by accepting
slight inaccuracy, instead of doing all computation precisely, we can
get significant energy and performance improvements [5, 6].
Several data processing applications use a large range of values
and require high precision. Therefore, the main computations in
many traditional and state-of-the-art computing systems are based
on floating point units (FPUs) [7, 8]. For example in CPUs, video
processing or high performance scientific computations require large
amounts of power. To cover the same dynamic range, the fixed point
unit must be five times larger and 40% slower than a corresponding
floating point [9].

Multiplication is one of the most common and costly FP opera-
tions, slowing down the computation in many applications such as
signal processing, neural networks, and streaming processes [10, 11].
Several techniques have been introduced to address multiplication
costs by designing an approximate multiplication unit. Most of
prior work attempted to reduce the bit-size of multiplication or use
multiplication in different sizes to enable approximation [12, 13].
However, either the lack of accuracy tuning or the large area require-
ments of the tuned designs, significantly reduces the advantages
provided by these approximation designs.

In this paper, we propose a configurable floating point multiplica-
tion, called CFPU, which significantly improves the multiplication
energy consumption by trading for accuracy. CFPU avoids the costly
multiplication when calculating the fractional part of a floating point
number by discarding one of the input mantissa and using the sec-
ond directly. To tune the level of accuracy, our design adaptively
distinguishes the inputs that will result in the highest output error
and assigns them to compute precisely on the CFPU. We evaluate
the efficiency of proposed technique on AMD Southern Island GPU
architecture by replacing the traditional FPUs with the proposed
CFPU. Our evaluation shows that the proposed CFPU can achieve
77% energy savings and 3.5× energy-delay product improvement
over eight general OpenCL applications, while providing acceptable
quality of service. In addition, the comparison of the proposed CFPU
with previous state-of-the-art multipliers [12–15] shows that our de-
sign can achieve 2.4× higher energy-delay product while providing
less error.

The rest of paper is organized as the following. Section 2 reviews
the related work. Section 3 describes the proposed approximate
multiplications. The experimental results are presented in Section 4.
Finally, Section 5 concludes the paper.

2 RELATED WORK
There are several commonly examined approaches to approximate
computing: voltage over scaling (VOS), use of approximate hard-
ware blocks, and use of approximate memory units. VOS involves
dynamically reducing the voltage supplied to a hardware component
to save energy, but at the expense of accuracy. Error rates for VOS
can be modeled to determine the trade-off between energy and accu-
racy for applications, allowing voltage to be lowered until an error
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Figure 1: Approximate multiplication of proposed CFPU between A ad B operands.

threshold is reached [16, 17]. However, the circuit is sensitive to any
variations, and if the operating voltage of a circuit is decreased too
far, timing errors begin to appear which are too large to correct.

Another recently emerged strategy is the application of Non-
volatile memories (NVM) to create approximate memory units, for
energy efficient storage and computing purposes [6, 18]. In com-
puting, the goal of this approach is to store common inputs and
their corresponding outputs. This style of associative memory can
retrieve the closest output for given inputs in order to reduce power
consumption [19, 20]. This approach does not work well in applica-
tions without a large number of redundant calculations. Associative
memory can be integrated into FPUs reduce these redundancies.

Finally approximate hardware involves redesigning basic com-
ponent blocks to save energy, at the cost of accurate output [12, 14,
21, 22]. Liu et al. utilize approximate adders to create an energy
efficient approximate multiplier [14]. Hashemi et al. designed a
multiplier that selects a reduced number of bits used in the multipli-
cation to conserve power [12]. Camus et al. propose a speculative
approximate multiplier combines gate-level pruning and an inex-
act speculative adder to lower power consumption and shrink FPU
area [21].

In contrast to previous work, we design a configurable approxi-
mate floating point multiplier which approximately processes data
using an input mantissa directly in the output. Our design produces
exact output for multiples of 2, but the level of accuracy for other
cases can be tuned by adaptively assigning far distance data to pre-
cise cores to compute.

3 APPROXIMATE FPU MULTIPLIER
Compared to integer computing units, FPUs are usually costly and
energy hungry components, due to the complex way floating point
numbers are stored. Multiplication based components are inefficient
and slow down many current applications including multimedia, neu-
ral networks and other learning and streaming applications [5, 12].
For instance, looking at general OpenCL applications, we observed
about 85% of floating point arithmetic involved multiplication. In
order to make multiplication efficient, we propose a technique where
costly mantissa multiplication is implemented by reusing the one of
the input values in the output.

In floating point notation, a number consists of three parts: a
sign bit, an exponent, and a fractional value. In IEEE 754 floating
point representation, the sign bit is the most significant bit, bits 31
to 24 hold the exponent value, and the remaining bits contain the
fractional value, also known as the mantissa. The exponent bits
represent a power of two ranging from -127 to 128. The mantissa
bits store a value between 1 and 2, which is multiplied by 2exp to
give the decimal value.

SA SB ExpA ExpB

MUX

Frac 1 Frac 2

X X X X XX XX X X X

Exponential MantissaSign

Ai bit

T
un

in
g 

bi
ts

FracBFracA

Adaptive Selector

Figure 2: CFPU Integration with adaptive selector and N tun-
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FPU multiply follows the steps shown in Figure 1. First, the sign
bit of A×B =C is calculated by XORing the sign bit of the A and B
operands. Second, the effective value of the exponential terms are
added together. Finally, the two mantissa values are multiplied to
provide the result’s mantissa. Because the mantissa ranges from 1 to
2, the output of the multiplication always fall between 1 and 4. If
the output mantissa is greater than 2, it is normalized by dividing by
2 and increasing the exponent by 1.

Our proposed design, which can be seen in Figure 2, uses three
techniques: mantissa approximation, adaptive selection, and tun-
ing. Mantissa approximation involves removing the costly mantissa
multiplication by copying one mantissa to the output and discarding
the second. Adaptive selection checks for a mantissa which will
produce an exact output when possible. The selector controls a
multiplexer (MUX) between the two inputs A and B, and copies the
selected mantissa to the output, while discarding the other. Tuning
utilizes the first N bits from the discarded mantissa to check against
a threshold value and, if the threshold is exceeded, the calculation is
run in exact mode. We further explain the three modifications in the
following sections.

3.1 Mantissa Approximation
The multiplication of the mantissas is the most costly operation,
taking 80% of the total energy of the multiply operation [23], so our
approach removes it entirely. Instead of multiplying the two man-
tissas, the unmodified mantissa from one of the input operands (e.g.
input B) is used for the output value. The error of any approximate
multiply is Mantissadiscarded −1. In the case where the mantissa is



1, the output error is 0%.

Error =
n−1

∑
i=0

2−((n−i)An−i−1 ) . (1a)

MaxError =
n−1

∑
i=0

2−(n−i) = 0.999..9. (1b)

Because the largest value a mantissa can be multiplied by is 2, the
deviation from the kept mantissa and the correct answer is at most
100%. However, the maximum error can be reduced down to 50%
by adding the first bit of the discarded mantissa to the sum of the
exponent values. When the discarded mantissa is greater than 1.5
(the first mantissa bit is 1), the error is less than 50% if the kept
mantissa is multiplied by 2 instead of 1. This is the functional
equivalent of increasing the exponent by 1. By doing this, the error
range is shifted to be -50% to 50% instead of 0% to 100% as shown
in Eq 2.

Error = abs(
n−1

∑
i=0

2−((n−i)An−i−1 ) −0.5). (2)

The additional logic needed to perform approximate floating point
multiplication is shown in Figure 1. The B mantissa is used directly
as the output mantissa, and the first bit of the discarded mantissa A
is added with the two exponent values.

3.2 Adaptive Operand Selection
Because the approximate multiply uses both exponents in its cal-
culation, but discards one of the mantissas, an operation always
multiplies by a power of 2. Therefore, a multiplication by a power of
2 will always result in an exact answer on our hardware. It is possi-
ble to reduce error by ensuring the value of the discarded mantissa is
equal to 1. This occurs when all the mantissa bits are 0. Multiples of
2 are common in many applications, so having hardware intelligently
check both inputs and adaptively discard a mantissa with value 1 (all
mantissa bits are 0) when possible to greatly reduce output error.

Figure 3.a compares the portion of multiplications which can run
precisely on the proposed CFPU with and without adaptive operand
selection for the OpenCL applications we evaluated. Consequently,
Figure 3.b shows the impact of the adaptive operand selection on
the computation accuracy of the proposed CFPU. The result shows
that adaptive operand selection, significantly improves computation
accuracy such that for all shown applications, the average relative
error reduces to less than 7%. This improvement is due to increas-
ing the portion of multiplications which are run precisely on the
CFPU. We verify this by looking at the percentage of precise CFPU
operations using the adaptive selection technique. For example, in
Sobel application, 82% of the outputs are calculated exactly, with
an overall relative error of 16% when using a naive approximate
approach, while adaptive selection shows 92% of the outputs cal-
culated exactly, at an overall relative error of 9%. Our evaluation
over eight different applications shows that this adaptive selection
technique can improve the computation accuracy by 8× compared
to a naive selection.

3.3 Tuning Accuracy
Although proposed approximate multiplication provides high energy
savings, the accuracy of computation is heavily impacted depend-
ing on application. For some applications, with quantized inputs,
e.g., Sharpen filter, the proposed design can work precisely with no

Sobel Robert Blur Mean Laplace Sharpen Prewit QuasiR
0

20

40

60

80

100

Applications

P
re

ci
se

 M
A

C
 O

p
er

at
io

n
 (

%
)

 

 

(a)

Sobel Robert Blur Mean Laplace Sharpen Prewit QuasiR
0

5

10

15

20

Applications

A
ve

ra
g

e 
R

el
at

iv
e 

E
rr

o
r 

(%
)

 

 

Random Operand Selection
Adaptive Operand Selection

(b)

Figure 3: a) The portion of precise CFPU computation in differ-
ent applications and b) the impact of smart operand selection
on the computation accuracy.
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Figure 4: Error distribution for applications.

quality loss. In addition, many recognition algorithms, such as mo-
tion tracking and plate detection applications, only need to quantify
changes in the input data. Therefore, the approximate multiplica-
tion can provide high accuracy, close to precise, computations on
those applications. Figure 4 shows the distribution of error rates for
inputs of two applications. In the case of Sobel, almost 90% of the
multiplies are by a multiple of 2 and are handled exactly by our ap-
proximate solution. The remaining 10% of operations have incorrect
values with error rates ranging up to 50%. The Mersenne Twister
application, on the other hand, has a more even distribution of error
rates. While about 12% of the computations will have 0% error, the
error rates are too randomly distributed to provide acceptable overall
error without an additional optimization.

To generalize the functionality of proposed design for general
applications (with acceptable approximation), our design requires
the ability to tune the level of accuracy. To this end, our design finds
inputs that will produce large output inaccuracy and then processes
them on FPU precisely. The N bits after the first of input A’s mantissa
is used to tune the level of approximation. The case of maximum
error occurs when mantissa A is furthest from a multiple of 2, which
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Figure 5: An example of 32-bit multiplication in conventional
precise FPU and proposed CFPU using N=2 tuning bits.

occurs when its value is 1 followed by all 0s. When tuning, the goal
is to ensure values close to this maximum error point are selected to
run exactly over values with lower error. Therefore, the hardware
must change it’s selection depending on the value of the first bit
of input A’s mantissa. If the first bit of mantissa A is 1, the first N
tuning bits are checked for 0s, where N is selected based on desired
accuracy. If a 0 is found, the hardware will run in exact mode. For
each guaranteed bit in the Ai−1 to 1st indexes, the maximum error is
reduced by half.

Error =

∣
∣
∣
∣
∣

n−1

∑
i=N

2−((n−i)An−i−1 ) −0.5

∣
∣
∣
∣
∣
. (3)

When the first bit is 0, the first N tuning bits are checked for 1s
instead. Because values closest to the non-tuned 50% error are run
on exact hardware first, the overall error rate for an application can
be low, with only a small number of multiplies computed exactly.

An example of CFPU multiplication is shown in Figure 5 for two
32-bit floating point numbers in precise FPU and proposed CFPU
using N=2 tuning bits. The conventional FPU finds the correct
solution of -510 by adding the exponents and multiplying the two
mantissa, while XORing the sign bit to find three parts of the output
data. In contrast, our design checks the first mantissa bit and the
N tuning bits after that. In this case, the first mantissa bit is 1, so
the output exponent value is increased by 1. The next two bits are
checked for against 0 to determine if the value will stay below a
desired error rate. When two tuning bits are checked, the maximum
error is 12.5%. In this example, both tuning bits are 1, so the
calculation will continue in approximate mode and the mantissa
from the value 8.5 is copied to the output value. The resulting output
is -544, which deviates 6.67% from the correct value of -510.

3.4 CFPU Hardware Support
Figure 6 shows the circuitry to enable CFPU adaptive operand selec-
tion and accuracy tuning. We implement adaptive operand selection
by only checking the mantissa bits in one of the input operands. In
the default case, our design copies the mantissa of the A operand
for the mantissa of the multiplication output, unless the detector
circuitry determines all mantissa bits of the A operand are zero. In
that case, CFPU selects the mantissa of the operand B as the output
operand.

As Figure 6 shows, the detector circuitry is a simple transistor-
resistor circuitry which samples the match-line (ML) voltage to
detect the Ai−1,Ai−2, ...,A0 input operand. In case of any 1-bit in a
mantissa, the sense amplifier will detect changes in the ML voltage
(ML=1). However, if all mantissa bits are zero, no current will pass
through Rsense and the B operand mantissa will be selected as the

output mantissa. To detect the 1 bit on Ath
i−1, ..., Ath

0 indices on

CFPU, the sense amplifier Clk needs to be set to 250ps. Based
on the results, we can dynamically change the sampling time to
balance the ratio of the running input workload on the approximate
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Figure 6: circuitry to support adaptive operand selector and
tuning the level of approximation in CFPU.

CFPU core. The operand selection happens by using two multiplexer
which are controlled with our detector hardware signal. Similarly,
to tune the level of approximation, our design uses N bits (after
the first mantissa bit) of the selected mantissa to decide when to
perform mantissa multiplication or approximate it. The number of
tuning bits sets the level of approximation, with each additional bit
reducing the maximum error by half. The goal is to check the value
of the Ai−1, ...,Ai−N to make sure they are same as the Ai. For this
purpose, the circuitry selects the original value or inverted values of
the tuning bits for the circuitry to search. To make the deign area
efficient, we use the same circuitry for adaptive operand selection
and tuning approximation. For each application, this sampling time
can individually set in order to provide target accuracy.

4 RESULTS
4.1 Experimental Setup
We integrated the proposed approximate CFPU on the floating point
units of an AMD Southern Island GPU, which has been commer-
cially used, e.g., Radeon HD 7970 device. We modified Multi2sim,
a cycle accurate CPU-GPU simulator [24] to model the CFPU func-
tionality on three main floating point units in GPU architecture:
multiplier, multiplier-accumulator (MAC) and Multiplier-then-adder
(MAD). We evaluated energy of traditional FPUs using Synopsys
Design Compiler and optimized for power using Synopsys Prime
Time for 1 ns delay in 45-nm ASIC flow [25]. The circuit level
simulation of the CFPU design has been performed using HSPICE
simulator in 45-nm TSMC technology. We test the efficiency of en-
hanced GPU on eleven general OpenCL applications: Sobel, Robert,
Mean, Laplacian, Sharpen, Prewit, QuasiRandom, FFT, Mersenne,
DwHaar1D and Blur. In these applications, roughly 85% of the
floating point operations involve multiplication.

We propose an automated framework to fine tune the level of ap-
proximation and satisfy required required accuracy while providing
the maximum energy savings. Figure 7 shows the proposed frame-
work, consisting of the accuracy tuning and accuracy measurement
blocks. The framework starts by putting the CFPU in the maximum
level of approximation. Then, based on the user accuracy require-
ment, it dynamically decreases the level of approximation until
computation accuracy satisfies the user quality of service. For each
application, this framework returns the optimal number of CFPU



Table 1: Energy and performance improvement and quality of loss replacing GPU with proposed floating point multiplications.

Applications Sobel Robert Mean Laplacian Sharpen Prewit QuasiR Average Improv.

Energy savings 84% 83% 81% 76% 75% 69% 72% 77%
Speed up 21% 24% 27% 16% 20% 22% 12% 20%

EDP improvement 8.3× 7.7× 6.4× 4.7× 5.3× 4.2× 4.1× 5.8×
QoL (%) 9.02% 1.19% 1.36% 1.96% 0% 0% 0% 1.93%

Table 2: Ratio of approximate to total operations and quality of loss running applications in different tuning mode.

Tuning bits Sobel Robert Mean Laplacian FFT Mersenne DwtHaar1D Blur
Approx/total QoL Approx/Total QoL Approx/Total QoL Approx/Total QoL Approx/Total QoL Approx/Total QoL Approx/Total QoL Approx/Total QoL

0 bit 100% 9.02% 100% 1.19% 100% 1.36% 100% 1.96% 100% 73% 100% 12% 100% 94% 100% 11.1%
1 bit 96% 2.70% 97% 0.35% 98% 1.04% 96% 0.50% 54% 9.8% 60% 8.8% 66% 31% 82% 3.7%
2 bits 94% 0.74% 95% 0.10% 85% 0.03% 94% 0.11% 32% 8.3% 43% 3.4% 55% 12% 76% 0.92%
3 bits 93% 0.07% 94% 0.03% 85% 0.01% 93% 0.02% 21% 4.1% 33% 1.6% 53% 8.3% 62% 0.36%
4 bits 92% 0.01% 94% ˜0% 84% ˜0% 92% ˜0% 15% 2.3% 29% 0.7% 47% 0.7% 53% 0.21%
Exact 92% 0% 93% 0% 84% 0% 92% 0% 10% 0% 23% 0% 45% 0% 53% 0%

Approximate 
GPU

QoS

No

Yes

Tuning 

Accuracy 
Requirement

Exact GPU

CFPU 
Config

Q
ua

lit
y 

M
ea

ns
ur

m
en

t

Figure 7: Framework to support tunable CFPU approximation.

tuning bits checked, providing maximum energy and performance
efficiency.

4.2 Approximate CFPU
To efficiently show the application of the proposed CFPU design,
we first look at approximate multiplication. The proposed modified
FPU can run entirely in approximate mode, while providing a level
of accuracy that is still acceptable for many applications. Table 1
shows the computation accuracy, energy savings, and speedup of
running eight general OpenCL applications on the approximate GPU.
The energy and performance of proposed hardware are normalized
to the energy and performance of a GPU using conventional floating-
point units. Our experimental evaluation shows that our approximate
hardware can achieve 77% energy savings, 20% speedup, and 5.8×
energy-delay product compared to the traditional AMD GPU, while
providing an acceptable output quality of less than 10% average
relative error.

4.3 Tunable CFPU Computing
We show the efficiency of the proposed CFPU by running different
multimedia and general streaming applications on the enhanced GPU
architecture. We consider 10% average relative error as an acceptable
accuracy metric for all applications, verified by [26]. We tune the
level of approximation by checking the N bits of mantissa in one of
the input operands. If all N tuning bits match with the first mantissa
bit, the multiplication runs in approximate mode, otherwise it runs
precisely by multiplying the mantissa of input operands. For each
application, Table 2 shows the quality of loss and portion of running
multiplications in each application on exact and on approximate
CFPU, when the number of tuning bit changes from none to 4 bits.
Increasing the number of tuning bits improves the computation
accuracy by processing the far and inaccurate multiplications in

Table 3: Comparing the energy, and performance of the CFPU
and previous designs ensuring acceptable level of accuracy.

Power(mW) Delay(ns) EDP (pJs) Max.Error Tunable
CFPU 3 0.17 1.6 0.44 6.3% Yes

DRUM6 [12] 0.29 1.9 1.04 6.3% No
ESSM8 [13] 0.28 2.1 1.2 11.1% No

Kulkarni [15] 0.82 3.5 10.0 22.2% No

precise CFPU mode. On the other hand, more number of tuning
bits slows down the computation, because a larger portion of data is
processed on precise CFPU. Figure 8 shows the energy consumption
and performance of a GPU enhanced with tunable CFPU using
different numbers of tuning bits. Our experimental evaluation shows
that running applications on proposed CFPU provides 3.5× energy-
delay product improvement compared to a GPU using traditional
FPUs, while ensuring less than 10% quality of loss. In addition,
accepting less then 1% error, the CFPU can still achieve 2.7× EDP
improvement compared to a GPU using traditional FPUs. To ensure
the quality of computation, Figure 9 compares the visual results
of Blur running on precise and approximate hardware. Our result
shows that approximate computing create no noticeable difference
between the precise and approximate result images.

To modify the standard FPU with our CFPU hardware, we need
to have 3.4% area overhead, and 2.7% energy overhead (if CFPU
runs in exact mode), which is negligible compared to efficiency and
tuning capability that CFPU can provide. In order to outperform
the standard FPU, our design needs to run at least 4% of the data in
approximate mode (or in 4% of the multiplications, one of the input
operands is a power of 2). This number is significantly smaller than
the numbers that we observed when running the tested applications
on the proposed CFPU.

To understand the advantage of proposed design, we compare
the energy consumption and delay of the proposed CFPU with the
state-of-the-art approximate multipliers proposed in [12, 13, 15].
The application of previous designs limits to a small range of robust
and error tolerant applications, as they are not able to tune the level
of accuracy in runtime. In contrast, the proposed CFPU dynamically
finds the inaccurate data and processes them in precise mode. CFPU
tunes the level of accuracy at runtime based on the user accuracy
requirement. This makes the application of CFPU general. Table 3
lists the power consumption, critical path delay, and energy-delay
product of CFPU alongside previous work in [12], [13] and [15] in
their best configurations. Our evaluation shows that at the same level
of accuracy, the proposed design can achieve 2.4× EDP improve-
ment compared to the state-of-the-art approximate multipliers.
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(d) Laplacian
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(e) FFT
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(f) Mersenne
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(g) DwtHaar1D
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(h) Blur

Figure 8: Energy consumption and energy-delay product of enhanced GPU with tunable CFPU normalized to GPU with conventional
FPU.

(a) Exact (b) Approx (c) Tuned

Figure 9: Output quality comparison for Blur application run-
ning on (a) exact computing, (b) approximate mode (PSNR =
25dB) and (c) tuned computing with PSNR= 34dB and 13% run
on precise CFPU.

5 CONCLUSION
In this paper, we propose a configurable floating point multiplier
which can approximately perform the computation with significantly
lower energy and performance cost. The proposed approximate
multiplication has tuning capability by adaptively processing an
uncertain part of data precisely. Our design considers floating point
implementation of proposed approximate design. Our experimental
evaluation shows that replacing the CFPU with existing FPUs results
in 77% energy savings and 4.8× energy-delay product improvement,
while providing less than 10% quality loss. In addition, our result
shows, that at the same level of accuracy the proposed CFPU can
achieve 2.4× lower energy-delay product compared to state-of-the-
art approximate multipliers.
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