
Hierarchical Hyperdimensional Computing for Energy Efficient
Classification

Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing
CSE Department, UC San Diego, La Jolla, CA 92093, USA

{moimani, chh217, dekong, tajana}@ucsd.edu

ABSTRACT
Brain-inspired Hyperdimensional (HD) computing emulates cogni-
tion tasks by computing with hypervectors rather than traditional
numerical values. In HD, an encoder maps inputs to high dimen-
sional vectors (hypervectors) and combines them to generate a model
for each existing class. During inference, HD performs the task of
reasoning by looking for similarities of the input hypervector and
each pre-stored class hypervector However, there is not a unique en-
coding in HD which can perfectly map inputs to hypervectors. This
results in low HD classification accuracy over complex tasks such as
speech recognition. In this paper we propose MHD, a multi-encoder
hierarchical classifier, which enables HD to take full advantages of
multiple encoders without increasing the cost of classification. MHD
consists of two HD stages: a main stage and a decider stage. The
main stage makes use of multiple classifiers with different encoders
to classify a wide range of input data. Each classifier in the main
stage can trade between efficiency and accuracy by dynamically
varying the hypervectors’ dimensions. The decider stage, located be-
fore the main stage, learns the difficulty of the input data and selects
an encoder within the main stage that will provide the maximum
accuracy, while also maximizing the efficiency of the classification
task. We test the accuracy/efficiency of the proposed MHD on speech
recognition application. Our evaluation shows that MHD can provide
a 6.6× improvement in energy efficiency and a 6.3× speedup, as
compared to baseline single level HD.

CCS CONCEPTS
• Computing methodologies → Machine learning approaches;
Supervised learning;

KEYWORDS
Brain-inspired computing, Hyperdimensional computing, Machine
learning, Energy efficiency
ACM Reference Format:
Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing. 2018. Hier-
archical Hyperdimensional Computing for Energy Efficient Classification. In
DAC ’18: DAC ’18: The 55th Annual Design Automation Conference 2018,
June 24–29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3195970.3196060

1 INTRODUCTION
Today, a large amount of effort is being invested into the design
and development of brain inspired computing, which relies on a
paradigm of computing starkly different from traditional methods.
The recent successes of deep learning networks have contributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196060

a considerable amount in furthering interest into the bio-inspired
areas of computing [1]. Neural Networks (NNs), particularly deep
neural networks, have demonstrated high accuracy with regards to
many cognitive tasks such as speech recognition, and language/text
recognition [2, 3]. Although accuracy is an important factor, clas-
sification efficiency is becoming more important as many learning
algorithms need to be processed on embedded devices with limited
resources [4, 5]. However, existing classification algorithms such
as neural networks, Support Vector Machine (SVM), and k-Nearest
Neighbor (k-NN) are computationally expensive [6]. This elimi-
nates the possibility of using these algorithms on resource limited
embedded processors.

Hyperdimensional (HD) computing is a computational approach,
which emulates cognitive tasks by computing with vectors in high-
dimensional space (hypervectors) as an alternative to traditional
deterministic computing with numbers. The idea of HD computing
is based on the understanding that brains compute with patterns of
neural activity that are not readily associated with numbers. Unlike
standard computing architectures, HD uses these patterns to process
inputs without using a traditional numerical representation [7]. In
fact, raw numerical computing ability of HD is relatively feeble
when compared against the results achievable by modern machines.

HD models neural activity patterns using hypervectors with di-
mensionality in the thousands (e.g., D=10,000). HD computing
builds upon a well-defined set of operations between randomly
generated hypervectors. These sets of operations create a frame-
work that is extremely robust in the presence of failure, and offers
a complete computational paradigm that is easily applied to learn-
ing problems [7]. The main difference between HD and traditional
computing techniques is the way data is represented, in that HD
computing represents the data as approximate patterns which can
be scaled very efficiently for a wide array of learning applications.
HD consists of an encoder and an associative memory. The encoder
block maps input data to high dimensional vectors (hypervectors)
and combines them to generate a model for each existing class.
During inference, an associative memory performs the task of rea-
soning by looking at the similarity of the input hypervector to each
of the stored model hypervectors. Examples include analogy-based
reasoning [8], language recognition [9], text classification [10, 11],
biosignal processing [12], speech recognition [13], DNA Sequenc-
ing [14], and prediction from multimodal sensor fusion [15].

However, HD computing provides poor accuracy over complex
tasks such as speech recognition, as there is not a unique encoder
which could perfectly map inputs to hypervectors while preserving
all input information. In this paper, we propose a hierarchical Hyper-
dimensional computing (MHD) which enables HD to take advantage
of multiple encoders without increasing the classification cost. MHD
consists of two stages: a main stage and a decider stage. The main
stage uses classifiers with different encoders to classify a wide range
of input data. Each classifier in the main stage can trade efficiency-
accuracy by dynamically varying the hypervector dimensions. In
MHD, the decider stage which is located before the main stage,
learns the difficulty of input data and selects an encoder accordingly
in the main stage which will provide the maximum accuracy, while
also maximizing the efficiency of the classification task. We tested

https://doi.org/10.1145/3195970.3196060
https://doi.org/10.1145/3195970.3196060

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing

the accuracy/efficiency of the proposed MHD on speech recognition
application. Our evaluation shows that MHD can provide a 6.6×
improvement in energy efficiency and a 6.3× speedup, as compared
to baseline single level HD.

2 HYPERDIMENSIONAL COMPUTING
2.1 HD Overview
HD computing is a computing paradigm involving long vectors
with dimensionality in the thousands called hypervectors [7]. In
high-dimensional space, there are several nearly orthogonal hyper-
vectors [16]. HD exploits well-defined vector operations to combine
these hypervectors, while also preserving most of the information of
the hypervectors. Hypervectors are holographic and (pseudo) ran-
dom with i.i.d. components and full holistic representation, thus no
component has more responsibility to store any piece of information
than any other hypervector.

2.2 Classification Applications
Classification has applications in many different domains. For in-
stance, speech and object recognition are increasingly common in
consumer electronics. There are well-defined pre-processing steps to
extract the features of different input types. For example, voice tech-
niques such as Mel-frequency cepstral coefficients (MFCCs) [17]
extract and map raw voice information into the frequency domain.
Regardless of the input type, the extracted features are ussually rep-
resented in a single feature vector with N elements. The goal of
learning algorithms is to generate a model which can identify the
patterns within the feature vectors.

Figure 1a shows the overview of the classification in high dimen-
sional space. HD consists of an encoder and an associative memory.
For all sample data within a class, HD maps data to high dimensional
vectors, called hypervectors, then combines them together to create
a single hypervector modeling each class. All trained class hyper-
vectors are stored in an associative memory. During the inference
process, the same encoding scheme maps test input data to high
dimensional space. Associative memory looks at the similarity of
the generated query hypervector against all stored class hypervec-
tors. The input then gets the label of that class with which it has the
highest similarity with.

The goal of HD is to encode the input data (feature vector) to a
single hypervector with D dimensions. Our encoder should consider
the impact of each feature position and feature value on the final
encoded hypervector. Assume each feature can get a value between
Fmin to Fmax. Our design divides this feature range into m equal
levels [Fmin, Fmin +∆Fm ,..., Fmax], where Li is the ith feature level
and ∆F = Fmax −Fmin. Level hypervectors need to have correlation
such that the neighbor levels provide higher similarity. We randomly
generate a bipolar hypervector of the L1 with D dimensions (-1 and
+1 elements). To consider correlation, we randomly select Dm bits
of L1 and flip them to generate L2 level hypervector. This procedure
continues until generating the hypervector of Lm by flipping Dm
random bits of the Lm−1 hypervector. Our design stores the generated
level hypervectors in item Memory (iM).

2.3 HD Encoders
We proposed two encoders to map vector features to high dimen-
sional space (shown in Figure 1b,c). The difference between these
encoders is in the way they consider the impact of each feature
position on the final hypervector. In the following, we explain the
encoders functionality in detail:

Encoder I: Record-based encoder
This encoding scheme assigns a unique channel ID to each feature

position. These IDs are hypervectors which are randomly gener-
ated such that all features will have orthogonal channel IDs, i.e.,
δ IDi, ID j < 5,000) for D = 10,000 and i , j; where the δ measures
the element-wise similarity between the vectors. These hypervectors
are stored in a Channel item Memory(CiM) as shown in Figure 1b.
Encoder I looks at each position of the feature vector and element-
wise multiplies the channel ID (IDi) with the corresponding level
hypervector (hvi). The following equation shows how the N fea-
ture IDs and hypervectors bind together to generate a single data
hypervector in ith class:

Si
1 = hvi

1 ∗ IDi
1 + hvi

2 ∗ IDi
2 + . . . + hvi

N ∗ IDi
N

hv j ∈ {L1, L2, . . . , Lm}, 1 ⩽ j ⩽ N
Encoder II: Ngram-based encoder

Unlike Encoder I, the second encoder differentiates feature posi-
tions by assigning a unique permutation for each feature (shown in
Figure 1c). For instance, the level hypervector corresponding to nth

feature rotationally permutes by n− 1th positions. The following
equation shows how hypervectors are combine different features in
input data to generate a single hypervector for an input data in ith
class:

Si
1 = hvi

1 +ρhvi
2 . . . + ρ

N−1hvi
N

hv j ∈ L1, L2, . . . , Lm, 1 ⩽ j ⩽ N

For all input data within a class ({Si
1, Si

2, . . . ,S
i
K}), our design

generates hypervectors in a similar fashion and then binds them
together to generate a single class hypervector.

Ci = Si
1 + Si

2 + . . . + Si
K

After training the HD model, we adjust the HD model based on
the retraining algorithm proposed in [13]. This retraining happens for
pre-specified number of iteration, unless the model accuracy stays
the same from one iteration to the next one. At inference, a test input
data is encoded to a hypervector using the same encoding used for
training (shown in Figure 1a). HD checks the similarity of this query
hypervector against all pre-stored classes in an associative memory.
The class with the highest Cosine similarity will be selected as the
output class.

3 HD CLASSIFICATION ENHANCEMENT
3.1 Multiple Encoders
In HD, there does not exist a single universal encoder with the
ability to map data to high dimensional space while keeping all
input information. In fact, each encoder can work properly only
for a specific types of input data. To show this, we look at speech
recognition problem. For speech recognition, we focus on the Isolet
dataset [18] with the goal of recognizing the pre-processed voices
among 26 letters of English alphabet.

Table 1 shows the HD classification accuracy using Encoder I,
Encoder II using hypervectors with 10,000 dimensions. In speech
recognition, we observe that Encoder I does a poor job differentiat-
ing similar letters such as {T, C, Z, E, . . .}. However, Encoder II
can address these classification issues by using permutation instead
of ID hypervectors. On the other hand, Encoder II is exclusive and
does not properly classify the voice of less similar letters, while
Encoder I does. In order to achieve high classification accuracy, we
propose MHD, an adaptive hierarchical hyperdimensional comput-
ing design which exploits the advantage of multiple encoders to
improve classification accuracy.

In addition, the result shows the best HD classification accuracy
occurs when the HD benefits from both encoders. The results show

Hierarchical Hyperdimensional Computing for Energy Efficient Classification DAC ’18, June 24–29, 2018, San Francisco, CA, USA

iMCiM

ID1 *

+ +

iMCiM

ID2 *

iMCiM

*IDN

(b) Encoder I

1

Fmax

Fmin

2
N

hvNhv2hv1

iM
+

iM

1

Query

hypervector

2
N

hv2hv1

+

iM

ρ1
ρN-1

Sample feature vectors

hvN

(c) Encoder II

Query

hypervector

Fmax

Fmin

Sample feature vectors

Encoder

Encoder

Encoder

Class 2 hypervector

Class 1 hypervector

Class N hypervector

Training Dataset

(Test Dataset) Encoder

Similarity

Check

Query hypervector

All samples in class 1

All samples in class 2

All samples in class N

Unknown

Input

Trained Model

(a) HD Classification Overview

Associative Memory

Figure 1: (a) The overview of HD architecture. The functionality of (b) record-based encoder and (c) Ngram-based encoder mapping
sample feature vectors to high dimensional space.

(a) (b) (c)

Figure 2: The impact of hypervector dimensions on (a) speech recognition accuracy, (b) energy consumption and (c) execution time
of the HD using different encoding modules.

Table 1: Classification accuracy of speech recognition using dif-
ferent encoding schemes.

Encoder I Encoder II MHD
(Both Encoders)

Recognition Accuracy 92.5% 90.9% 95.9%

that HD using multiple encoders can achieve 3.4% higher classifica-
tion accuracy as compared to single encoder. In order to allow MHD
to benefit from multiple encoders, our design needs to be adaptive
and must select the proper encoder depending on the input data. In
Section 4, we explain how our proposed MHD benefits from both
encoding schemes at the same time.

3.2 Dynamic Dimension Reduction
The energy consumption and execution time of the HD block depend
on both encoder and associative memory. For speech recognition
(using Encoder I), HD uses a large sized encoder with 617 input
channels. This large encoder takes 65% and 47% of total energy con-
sumption and execution time respectively of the HD. Reducing the
dimension of the hypervectors used is one of the most effective ways
to improve HD efficiency. Figure 2a shows the impact of scaling the
hypervector dimensions on the speech recognition accuracy using
Encoder I and Encoder II. The results show that both encoders have
high robustness to dimension reduction. However, this robustness
is much higher for Encoder I. For instance, reducing hypervector
dimensions to 8,000, the HD using Encoder I can still provide the

same accuracy as HD using the full 10,000 dimensions. Further
reducing dimensions to 2,000, Encoder I and Encoder II can provide
88.5% and 78.4% recognition accuracy, respectively. This result
indicates that the HD using Encoder I and Encoder II can classify
88% and 78% of data correctly, even while using hypervectors with
2,000 dimensions. This means that we do not need to use costly
HD with full 10,000 dimensions for classification. Instead we can
classify majority of data using HD with 2,000 dimensions while the
HD with 10,000 dimensions can be use to classify the more difficult
tasks.

Figure 2b,c shows the average energy consumption and execu-
tion time of HD when hypervector dimension scales from 10,000 to
2,000. The result shows that HD energy consumption and execution
time linearly scales with the hypervector dimensions. For instance,
in 2,000 dimensions, HD can achieve a 4.7× energy efficiency im-
provement and a 3.9× speedup when compared to HD with 10,000
dimensions. One main advantage of HD is that it does not require
a different training model for classifiers with smaller dimensions.
HD enjoys full holistic hypervector representation, meaning that
no component in hypervector is more representative than others.
Therefore, using the HD model with D = 10,000, we can perform
the classification on smaller dimensions of the same model to reduce
the classification cost. In other words, we can have the low cost
classifiers which are using the same model as Encoder I and En-
coder II, but use a part of hypervector dimensions for classification
(e.g. 2,000 dimensions). This eliminates the needs to train a separate
HD model and also reduces the memory/hardware cost to keep a
separated model for low cost classifiers.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing

Encoder I

Classifier2 (D=2000)
Hypervector Classifier 1

Hypervector Classifier 2

Hypervector Classifier 4

iM

Hypervector Classifier 3

Decider HD
Main HD Classifier

D

Classifier1 (D=10,000)

Classifier4 (D=2000)

Classifier3 (D=10,000)

E
n

c
o

d
in

g
 I

I
E

n
c
o

d
in

g
 I

Similarity Check

Similarity Check

ID1*hv1+ID1*hv1 + + IDNhvN

Input

Voice

Encoder II
hv1 + ρ(hv2) + + ρ

N-1
(hvN)

S
 &

 C
o

n
fi

d
e
n

c
e

CiM

ID hv

hv

M
U

X

1

0

S
im

il
a

ri
ty

 (
S

)

THR

E
n

c
o

d
in

g
 1

Figure 3: The overview of the proposed MHD architecture.

4 ADAPTIVE HIERARCHICAL HD
4.1 MHD Overview
In order to benefit from multiple encoder as well as low cost HD
classifier, our design needs to pre-recognize input data and assign
them to the proper encoder with minimum dimensions. In this sec-
tion, we explain the functionality of the proposed hierarchical HD
classifier, called MHD, supporting multiple encoders as well as low
cost classifiers. In the example explained in Section 3, MHD has
four classifiers: two main classifiers using Encoder I and Encoder II
with high dimensions, e.g. 10,000 bits, and two low cost classifiers
using the same encoders but with lower dimensions, e.g. 2,000 bits.
Figure 3 shows the architecture of the MHD design consisting of a
Decider and Main stages. Decider stage gets general information
from input data by mapping the input hypervector using Encoder I.
Then, it accordingly selects classifiers in the main stage which would
possibly classify input data correctly. The Decider stage looks at
the similarity of a query hypervector to all class hypervectors. All
classes with a similarity higher than a decider confidence value (set
by user) will be selected as possible target classifiers. However, it is
obvious that HD with 10,000 dimensions always outperforms an HD
design with 2,000 dimensions (using the same encoder). Thus, the
decider HD should select a classifier in the main stage which results
in: (i) maximum accuracy as well as (ii) minimum classification cost.
For instance, if the decider has high confidence that Encoder I with
both 2,000 and 10,000 dimensions can correctly classify as an input
data, the decider selects low cost classifier with 2,000 dimensions to
perform the classification task.

4.2 MHD Training & Confidence
MHD trains in two steps: (i) the main stage trains for both encoders
in parallel and independently. This training is one-shot learning and
gives us two HD models with a full 10,000 dimensions. MHD can
use a smaller version of such models for low cost classifiers. (ii) A
decider HD trains over whole training dataset by initializing multiple
hypervectors, each representing a classifier in the main stage. The
number of hypervectors in decider HD depends on the number of
available classifiers in the main stage (Four in our example). After
training all class hypervectors in main stage, the training in the
decider stage starts by initializing all decider hypervectors to zero
values. The decide hypervectors train depending on how well the
main stage can classify data. Therefore, to find decide model, our
design checks the similarity of each input data to all main stage
classifiers. Then our design adds such input hypervector to decide
vector in decider HD, if the corresponding main stage classifier could

Table 2: The impact of the decider confidence on the efficiency
and accuracy of the MHD in 4-level configuration.

Decider Confidence 75% 80% 85% 90% 95%
Recognition Accuracy 93.5% 94.5% 95.2% 95.7% 95.9%

Energy saving 76.4% 72.1% 62.3% 34.1% 5.7%
Speedup 72.5% 70.6% 67.4% 57.8% 35.4%

correctly classify input data. For example, if an input data in main
stage could classify by Encoder I with 2,000 and 10,000 dimensions,
our design adds input hypervector to the corresponding hypervectors
at the decider stage (shown in Figure 3). However, if input data is
predicted to wrongly classify by a classifier, no hypervector will
be added to corresponding hypervector. This process continues on
the training dataset until generating a decider HD with multiple
hypervectors, each corresponds a classifier in the main stage.

During the inference stage, when an input data is loaded into the
system, decider HD checks its similarity against all stored hyper-
vectors. A class or classes which have the highest Cosine distance
similarity to input data (higher than a pre-defined threshold value,
T HR) can be considered as classifiers which could correctly clas-
sify such data. The Decider HD looks at all the models in the main
stage which could possibly classify that particular task and activate
a classifier with a lowest dimension. If none of the classes have the
confidence level to classify a particular input (i.e., Cosine distance
similarity less than a pre-defined threshold over all classes), our
design assigns such input data to a class which has the highest simi-
larity. As default, the decider stage encodes inputs using Encoder I.
If the decider selects a classifier which uses Encoder I, our design
does not need to pay the cost of encoding again. MHD exploits this
characteristic to be biased toward a low cost classifiers. Therefore,
after the low dimension classifiers, a classifier which uses the same
encoder as the decider stage will have second priority.

Table 2 shows the impact of the confidence level on the classifica-
tion accuracy and efficiency of the MHD design using four classifiers
in the main stage. The confidence value is a Cosine similarity of an
input hypervector with the decider HD hypervectors. As our eval-
uation shows, reducing a threshold confidence below 95% enables
classifiers with lower confidence be assigned for the classification
task. This reduces the classification accuracy of the MHD design.
However, reducing the confidence level improves the efficiency of
the classification. The results in Table 2 show the classification ac-
curacy, the average energy savings and the speedup that MHD can
achieve when compared to the HD using Encoder I. As results show,
reducing the confidence value to 75% improves the performance
and energy efficiency of the MHD by 77.4% while providing about
2.4% lower classification accuracy. Note that these accuracies are
still higher than the accuracy that HD using single encoding module
provides.

4.3 Decider Stage Relaxation
Running the decider HD at the top of the main stage is not always
cheap. For MHD with many encoders in the main stage, a decider
HD requires a large associative memory to store hypervectors corre-
sponding to each class. This reduces the overall advantages that our
design can provide. For the speech recognition example, the main
stage with four classifiers requires a decider HD with four hyper-
vectors. In this configuration, the decider adds 426 ≈ 15% energy
overhead to classification. As HD with D = 2,000 takes about 5×
lower energy than HD with D = 10,000, our design needs to run at
least 18% of inputs on HD with D = 2,000 in order to compensate
the decider HD overhead. Our design uses two approximations to

Hierarchical Hyperdimensional Computing for Energy Efficient Classification DAC ’18, June 24–29, 2018, San Francisco, CA, USA

Table 3: Model size and classification accuracy of MHD in different configurations.

1-level 2-level 4-level 6-level 8-level

Configuration Encoder Encoding 1 Encoder I, Encoder II Encoder I, Encoder II Encoder I, Encoder II Encoder I, Encoder II

Dimensions 10,000 10,000 2,000, 10,000 2,000, 4,000
10,000

2,000, 4,000
6,000, 10,000

Speech Recognition
Effective Dimension 10,000 10,000 6,000 5,400 4,600

Model Size 67.5KB 70KB 72.5KB 75KB 77.5KB
Classification Accuracy 93.6% 95.9% 95.9% 95.9% 95.9%

improve the efficiency of the decider HD:
(i) Sampling: sampling data features to generate input hypervector.
We do not need to use all input features to generate a voice hyper-
vector. Instead, we can use a part of input frequencies to generate
input data.
(ii) Dimension reduction: reducing dimensionality of the decider
HD could significantly improve the classification efficiency.
In Section 5.3, we will explore the impact of the decider HD relax-
ation on the overall MHD efficiency and accuracy.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
To estimate the cost of digital design, we use a standard cell-based
flow to design dedicated hardware for MHD. We describe the pro-
posed designs using RTL System-Verilog. For the synthesis, we use
Synopsys Design Compiler with the TSMC 45 nm technology library
with the general purpose process and high VT H cells. We extract its
switching activity using ModelSim by applying the test sentences.
We measure the power consumption of HD designs using Synopsys
PrimeTime at (1 V, 25◦C, TT) corner.

We describe the functionality of the proposed MHD using C++
implementation. We compare the efficiency and accuracy of MHD
architectures with state-of-the-art classification techniques running
on Intel Core i7 processor with 16 GB memory (4-core, 2.8GHz).
For the measurement of CPU power, we use Hioki 3334 power meter.
We use this to test the efficiency of the proposed design on speech
recognition application, where the goal is to recognize voice audio
of the 26 letters of the English alphabet. The training and testing
datasets are taken from the Isolet dataset [18]. This dataset consists
of 150 subjects speaking each letter of the alphabet twice. The speak-
ers are grouped into sets of 30 speakers. The training of hypervectors
is performed on Isolet1,2,3,4, and tested on Isolet 5.

5.2 MHD Efficiency-Accuracy Trade-off
We explore the accuracy and efficiency of the MHD when the confi-
dence of the HD decider is changed. Table 3 shows different MHD
configurations. The baseline is an HD using a single encoder (En-
coder I). The second configuration is an HD with two different
encoding schemes, both working with 10,000 dimensions. In the
third configuration, our design can select hypervectors with 2,000 di-
mensions over each encoding. The 6-level (8-level) configuration has
two (four) more intermediate classifiers with D = 4,000 (D = 4,000
and D = 6,000) dimensions over both encoding modules.

As explained before, our design uses the same model as D =
10,000 for classifiers with lower dimensions. Table 3 shows the
MHD model size in different configurations. Our results show that
there is a jump in model size, while going from 1-level to 2-level
configuration. However, increasing the number of levels does not
change the model size significantly. This is because in multi-level
design, the size of main classifier is fixed over all configurations (i.e.,
fixed encoding). Thus, using a larger number of levels only increases
the decider HD model size.

Table 3 shows the classification accuracy of MHD in different con-
figurations during recognition task. The results are obtained while
setting the confidence value to 95% for the decider HD. MHD in 2-
level configuration can improve the classification accuracy by 3.5%,
by adaptively switching between the encoding modules. This im-
provement is achieved at the cost of adding extra decider block with
a 27% energy and a 4% performance penalty. MHD in 4-level config-
uration does not further improve the classification accuracy because
the two new classes simply use the same encoder in different dimen-
sions. However, MHD in this configuration (using classifiers with
D = 2,000 dimensions) can provide 5.7% higher energy efficiency
and a 35.4% speedup as compared to single stage HD. Increasing
the number of levels to six gives more flexibility to MHD to select
a better low cost encoder to classify incoming input data. MHD in
this configuration can provide a similar accuracy to the original HD
with 42.5% and 52.8% energy efficiency improvement and speedup
respectively when compared to baseline HD (using single encoder).
Increasing the number of levels to eight does not further improve
the classification efficiency because MHD in 8-level configuration
requires a large and costly decider HD.

Figure 4 shows the impact of the decider confidence on the ac-
curacy classification, energy consumption and speedup of MHD.
The energy and speedup are normalized to a 1-level HD. Our result
shows that in all the configurations, MHD with higher decider con-
fidence provides higher classification accuracy. Although reducing
the confidence level below 95% slightly degrades the classification
accuracy, it significantly improves the classification efficiency by
assigning a greater portion of tasks to low dimension classifiers, and
therefore reducing the effective MHD dimension (shown in Table V).
MHD with a larger number of levels has higher robustness to reduc-
tion in confidence level. For example, reducing the confidence level
from 95% to 75% degrades the classification accuracy of 4-level
MHD by 2.4%, while only having a 1.1% impact on accuracy for
MHD with 6-level configurations. The higher robustness of 8-level
MHD is due to the availability of a greater number of intermediate
levels that inputs can be classified to. In terms of efficiency, 4-level
MHD shows higher potential for energy savings, as compared to
6-level and 8-level designs. While accepting a 1% quality loss, MHD
in 4-level configuration (using 80% confidence) can achieve 8.1×
energy-delay product (EDP) improvement as compared to 1-level
HD. This EDP improvement increases to 27.2× and 14.3× for MHD
in 6-level and 8-level configurations.

5.3 Decider Relaxation
As explained before, the decider HD can be an energy bottleneck
of MHD design when the number of classifiers in the main stage
increases over six. In general, for MHD with a large number of
classes, the decider HD takes a considerable part of total MHD
energy and execution time. For instance, in 6-level MHD (95%
decider confidence), the decider takes in an average of 37% of
total MHD energy consumption and 58% of total execution time.
Therefore, relaxing the computational complexity of the decider
can further improve MHD classification efficiency. However, our

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e

 R
e
la

ti
v
e

 E
rr

o
r

(%
)

(a) 4-level Configuration

TABLE V

CONFIGURATION AND EFFICIENCY OF
MHD ACCEPTING DIFFERENT ERRORS

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e

 R
e
la

ti
v
e

 E
rr

o
r

(%
)

0

0.5

1

1.5

2

2.5

A
v
e
ra

g
e

 R
e
la

ti
v
e

 E
rr

o
r

(%
)

(b) 6-level Configuration (c) 8-level Configuration

Figure 4: Impact of the decider confidence on the speech recognition accuracy and efficiency (normalized to 1-level HD) .

D=8000

S=70%
D=6000

S=50%

D=4000

S=30%

D=2000

S=20%
D=2000

S=10%

Sampling & Dimension

Δe

Figure 5: Normalized energy consumption and execution time
of MHD using sampling and dimension reduction in the decider
HD.

design should ensure that the changes have minor impact on MHD
accuracy.

Figure 5 shows the impact of sampling and dimension reduc-
tion on the energy consumption and execution time of MHD. The
graph shows the result when MHD accepts 0%, 0.5%, 1%, 1.5%
and 2% quality losses when compared to the baseline MHD where
the decider is not relaxed (∆e = erelaxed − ebaseline). The top x-axis
on Figure 5 shows the best values for sampling and hypervector
dimensions which correspond to the ∆e error reported on bottom
x-axis. Our evaluation shows that relaxed MHD can achieve same
accuracy as that of the baseline (no sampling and D = 10,000) when
the decider dimension is reduced to 8,000 and samples 70% of the
inputs data. In this configuration, MHD can achieve 10.3% energy
efficiency improvement and a 6.4% speedup when compared to the
baseline. Reducing the sampling rate and dimension of decider HD
further improves the MHD efficiency at the cost of lower classifica-
tion accuracy. For example, while accepting a 2% loss in accuracy,
MHD can improve the classification energy and execution time by
6.6× and 6.3× (2.7× and 3.3×) as compared to single level HD
(baseline 6-level MHD). Note that this accuracy is still 0.3% higher
than the accuracy for a single stage HD. Relaxing the decider HD
(D = 4,000 dimensions and 30% sampling) and using a decider
with 80% confidence improves the energy consumption and exe-
cution time of MHD by 9.3× and 19.4×, while providing 94.0%
classification accuracy.

6 CONCLUSION
In this paper we propose a novel hierarchical hyperdimensional
(HD) classifier, which enables the classifier to take advantage of
multiple encoders without increasing the classification cost. MHD
consists of two stages: a main stage and a decider HD. The main
stage uses multiple classifiers with different encoders to classify

a wide range of input data. Each classifier in the main stage can
trade efficiency-accuracy by dynamically varying the hypervector
dimensions. The decider stage, which is located before the main
stage, learns the difficulty of the input data and accordingly selects
an encoder in the main stage which provides the maximum accuracy,
while maximizing the efficiency of the classification task. We test
the accuracy/efficiency of the proposed MHD on speech recognition
application. Our evaluation shows that MHD can provide a 6.6×
improvement in energy efficiency and a 6.3× speedup, as compared
to baseline single level HD.

ACKNOWLEDGMENT
This work was partially supported by CRISP, one of six centers in
JUMP, an SRC program sponsored by DARPA, and also NSF grants
#1730158 and #1527034.

REFERENCES
[1] Y. LeCun et al., “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
[2] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in english and

mandarin,” in ICML, pp. 173–182, 2016.
[3] S. I. Venieris et al., “fpgaconvnet: A framework for mapping convolutional neural

networks on fpgas,” in FCCM, pp. 40–47, IEEE, 2016.
[4] J. Venkatesh et al., “Scalable-application design for the iot,” IEEE Software,

vol. 34, no. 1, pp. 62–70, 2017.
[5] M. Shafique et al., “Adaptive and energy-efficient architectures for machine learn-

ing: Challenges, opportunities, and research roadmap,” in IEEE ISVLSI, pp. 627–
632, IEEE, 2017.

[6] S. Suthaharan, “Big data classification: Problems and challenges in network
intrusion prediction with machine learning,” ACM SIGMETRICS Performance
Evaluation Review, vol. 41, no. 4, pp. 70–73, 2014.

[7] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive Com-
putation, vol. 1, no. 2, pp. 139–159, 2009.

[8] P. Kanerva, “What we mean when we say “whatâĂŹs the dollar of mexico?”:
Prototypes and mapping in concept space,” in AAAI Fall Symposium, pp. 2–6,
2010.

[9] A. Joshi et al., “Language geometry using random indexing,” Quantum Interaction
2016 Conference Proceedings, In press.

[10] M. Imani et al., “Low-power sparse hyperdimensional encoder for language
recognition,” IEEE Design & Test, vol. 34, no. 6, pp. 94–101, 2017.

[11] M. Imani et al., “Exploring hyperdimensional associative memory,” in IEEE
HPCA, pp. 445–456, IEEE, 2017.

[12] A. Rahimi et al., “Hyperdimensional biosignal processing: A case study for emg-
based hand gesture recognition,” in IEEE ICRC, October 2016.

[13] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech
recognition,”

[14] M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdimensional
computing,” IEEE BHI, 2018.

[15] O. Rasanen et al., “Sequence prediction with sparse distributed hyperdimensional
coding applied to the analysis of mobile phone use patterns,” IEEE TNNLS, vol. PP,
no. 99, pp. 1–12, 2015.

[16] P. Kanerva, “Encoding structure in boolean space,” in ICANN 98, pp. 387–392,
Springer, 1998.

[17] B. Logan et al., “Mel frequency cepstral coefficients for music modeling.,” in
ISMIR, 2000.

[18] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.

http://archive.ics.uci.edu/ml/datasets/ISOLET

	Abstract
	1 Introduction
	2 Hyperdimensional Computing
	2.1 HD Overview
	2.2 Classification Applications
	2.3 HD Encoders

	3 HD Classification Enhancement
	3.1 Multiple Encoders
	3.2 Dynamic Dimension Reduction

	4 Adaptive Hierarchical HD
	4.1 MHD Overview
	4.2 MHD Training & Confidence
	4.3 Decider Stage Relaxation

	5 Experimental Results
	5.1 Experimental Setup
	5.2 MHD Efficiency-Accuracy Trade-off
	5.3 Decider Relaxation

	6 conclusion
	References

