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ABSTRACT
Recently, Processing-In-Memory (PIM) techniques exploiting re-
sistive RAM (ReRAM) have been used to accelerate various big
data applications. ReRAM-based in-memory search is a powerful
operation which efficiently finds required data in a large data set.
However, such operations result in a large amount of current which
may create serious thermal issues, especially in state-of-the-art
3D stacking chips. Therefore, designing PIM accelerators based on
in-memory searches requires a careful consideration of tempera-
ture. In this work, we propose static and dynamic techniques to
optimize the thermal behavior of PIM architectures running in-
tensive in-memory search operations. Our experiments show the
proposed design significantly reduces the peak chip temperature
and dynamic management overhead. We test our proposed design
in two important categories of applications which benefit from
the search-based PIM acceleration - hyper-dimensional computing
and database query. Validated experiments show that the proposed
method can reduce the steady-state temperature by at least 15.3
°C which extends the lifetime of the ReRAM device by 57.2% on
average. Furthermore, the proposed fine-grained dynamic thermal
management provides 17.6% performance improvement over state-
of-the-art methods.
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1 INTRODUCTION
In today’s big-data era, data movements between off-chip mem-
ory and computing cores dominate energy consumption and per-
formance of conventional computing systems [1]. Processing-in-
memory (PIM) is a promising technique to address this issue by
processing data locally in memory [1–3]. Most PIM technologies
exploit the analog characteristic of dense and efficient non-volatile
memories (NVMs) [1, 4, 5]. For example, work in [4] exploited the
current-based switching of the NVM devices to implement NOR-
based operations. Work in [5–8] extended this bitwise operation to
support 32-bit additions and multiplications in order to accelerate
big data applications. Other than normal arithmetic operations,
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recent PIM architectures utilize complex operations such as asso-
ciative search to complete data-intensive tasks in memory. Such
in-memory search operations can be used to accelerate various
important applications such as machine learning and query pro-
cessing [9–14]. An in-memory search operation may consume a
massive amount of power because it activates all memory rows. For
instance, the energy consumed by an in-memory search operation
on 32 ReRAM rows (1024 bits/row) in 45nm is 2740fJ [15], which
means the power consumption of such operations may reach as
high as 2.74W at 1GHz frequency. Considering the large number
of memory rows required for search operations in large datasets,
such power consumption may cause serious thermal issues in the
memory chip especially when using the state-of-the-art 3D stacking
technologies [16]. Temperature plays an important role in not only
reliability but also endurance of ReRAM [17]. Handling the thermal-
related issues becomes critical for emerging PIM acceleration based
on in-memory associative search.

Temperature optimization for PIM acceleration should come
from both off-line and online stages. Off-line data allocation de-
termines high power-consuming regions of ReRAM chip which
may cause extremely various thermal behaviors while an online
method guarantees the dynamic temperature can be controlled
in a reasonable range. In this work, we first explore application
data allocations in the PIM architecture to optimize its steady-state
temperature. Due to the large design space, we propose a genetic
algorithm to efficiently search for a near thermal-optimal data al-
location. Nevertheless, such thermal-optimal data allocation may
still fail to meet the temperature limitation, which makes dynamic
thermal management (DTM) necessary to further control the run-
time temperature behavior. Traditional methods to manage the
chip temperature include dynamic voltage and frequency scaling
(DVFS) [18], task allocation [19], and memory access control [20].
However, directly applying DVFS may significantly sacrifice the
performance of the PIM architecture because other operations in-
cluding normal memory operations and arithmetic PIM operations
will slow down. In fact, there is no solution available for controlling
the power consumption of PIM applications which are dominated
by in-memory searches.

To enable an efficient DTM, we propose a new search design
which divides each in-memory search operation into a configurable
number of searches, each of which is applied on a subset of the
table. Based on the proposed design, we implement a fine-grained
management mechanism which adjusts search operations handled
by different vaults based on dynamic temperatures. We test all pro-
posed mechanisms in several emerging applications accelerated
by the PIM architecture from fields of machine learning and data-
base query. Based on our experiment, the thermal-optimal data
allocation scheme found by our algorithm reduces the steady-state
temperature by at least 15.3 °C extending the lifetime of the ReRAM
device by 57.2% on average. Our evaluation shows that the proposed
dynamic management approach can improve the PIM performance
by at least 17.6% as compared to state-of-the-art DTM methods.
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Figure 1: The structure of HMC-like [16] 3D stack memory
consisting of general purpose PIM-enable ReRAM.

2 BACKGROUND
2.1 ReRAM-based PIM Architecture
To solve the memory wall issue, emerging memory technologies
have been exploited as not only fast and scalable memory [17,
20, 21], but also as in-memory processing units. ReRAM is one of
the most popular technologies which can efficiently handle these
operations. In this work, we adopt a Hybrid Memory Cube (HMC)-
like [16] memory design which has been used in several recent
emerging memory architectures [17, 20, 21] (Figure 1). The archi-
tecture contains multiple memory layers and one logic layer where
the data is transferred by the Through-Silicon-Vias (TSVs) vertically
from the memory to the controller placed on the logic layer. The
architecture is divided into multiple vaults, each of which contains
multiple banks. We adopt a 2.5D design which places the host pro-
cessor in a separate stack with a centralized PIM controller. The
PIM controller communicates with vault controllers based on the
address of instructions and each vault controller processes opera-
tions in the vault. Each bank consists of multiple memory blocks
each of which is an array of ReRAM cells. The peripheral circuits
in the ReRAM block handle data stored in ReRAM cells based on
the operation. We utilize a general-purpose ReRAM block design
which enables various PIM operations including bit-wise opera-
tions, additions, multiplications, and associative searches [11].

2.2 Search-based PIM Applications
In this paper, we focus on the emerging ReRAM-based PIM ar-
chitecture to accelerate brain-inspired computing [13] and query
processing [11] which requires intensive in-memory associative
search operations.

Brain-inspired computing: Hyperdimensional (HD) comput-
ing is based on understanding the fact that brains compute with
patterns of neural activity which are not readily associated with
numbers [22]. However, due to the very large size of the brain’s cir-
cuits, such neural activity patterns can only be modeled with points
of high-dimensional space (e.g., D=10,000). The HD computing can
perform the classification task using two main modules; encoding
and associative search [23]. The encoding module maps input data
into high-dimensional space, hypervector, then the training module
combines all hypervectors in order to generate a binary hypervector
representing each class. For example, an HD model with k classes
will end up having k hypervectors where each corresponds to one
of the classes. Each block implements the encoding and training
using in-memory bit-wise operations (XOR) [4] and in-memory ad-
ditions between the vectors in 10,000 dimensions (Figure 2a) [24].
After training, the classification can be performed using a set of
search-based operations. A search block compares the similarity of
an encoded data with all pre-trained class hypervectors (Figure 2b).

Figure 2: The PIM architecture processing HD computing in
(a) arithmetic and (b) search blocks.

The goal of the search block is to find a class hypervector which
has the highest similarity to the pattern of the encoded data.

Query processing: In data management systems, the execution
time of queries tends to increase linearly or sometimes exponen-
tially as more records are stored in a single server instance. Data
movement is the main bottleneck of current computing systems
when the size of data increases over the cache capacity of the pro-
cessing core [25]. Processing in-memory architecture accelerates
the query processing by supporting all essential query functionality
in memory [11]. Similar to HD computing, query processing also re-
quires both arithmetic and search blocks. A query application may
involve both an exact search and a search for minimum/maximum
values. The PIM architecture supports different types of search
operations by exploring different sense amplifiers for a content
addressable memory block [10, 13]. The results of the search op-
eration are written into other memory blocks which are reserved
to perform the computation on the selected data. The example of
operations is the addition, multiplication, and bit-wise operations
which all can be processed using NOR-based operations.

3 THERMAL-AWARE DATA ALLOCATION
3.1 Thermal Effects of In-Memory Searches
In-memory acceleration for emerging applications involves exten-
sive search operations. To run an HD computing application, the
memory required for in-memory search depends on the number of
class hypervectors. Since the dimensionality of each hypervector is
large, each hypervector is stored across different memory banks to
support associative search operations. For example, if each hyper-
vector has a dimensionality of 10,000, a total number of 10 memory
banks are required if each memory row has 1024 bit. Encoding
different data points can happen in parallel which means multiple
pairs of encoding and search modules are used for one application.
In this case, the memory requirement for associative searches may
increase significantly. Query processing applications may also con-
sume a significant amount of memory for in-memory associative
search operations. Associative search operations happen over all
data entries available in the dataset, which can easily scale up the
amount of required computations.

The power consumption of PIM-enabled memory depends on
the number of memory rows supplied by the voltage. The search
operation requires the activation of a large number of memory rows
resulting in high power consumption. To explore the temperature
issues in the 3D PIM architecture, we run an HD computing appli-
cation for speech recognition. The target application has 26 class
hypervectors, each of which has 10,000 dimensions, for each search
module which takes up 10 ReRAM banks in the PIM architecture.
We use 10 encoding-search bank pairs to balance the size of mem-
ory used for storing data points and the computing parallelism. The
details of the experimental setup are presented in Section 5.



Thermal-Aware Design and Management for Search-based In-Memory Acceleration DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Naive Strike Chess-Board
98

93

88

83

78

73

68

65

(°C)

Figure 3: Temperature distributions of different memory al-
location schemes.

We test three memory allocation schemes as shown in Figure 3.
The results show the steady-state temperature distributions of the
bottom ReRAM layer, which is the hottest layer in all cases. The
results show that "strike" and "chess-board" allocation schemes
provide over 8 °C lower peak temperature than "naive" allocation
scheme which allocates high power consuming banks together.
High temperature may significantly hurt the reliability and en-
durance of ReRAM device [17, 20]. Specifically, the endurance in
terms of total amount of writes can be given by

Endurance ≈ (
tw
t0

)
UF
US

−1 (1)

,where tw is write latency, t0 is a device related constant, UF is
the activation energy for failure mechanisms and US is the activa-
tion energy of switching mechanism. Based on several previous
works [26, 27], UFUS ranges from 2 to 4 for non-volatile memories. tw
has a direct relation with temperature which decreases from 50ns
to 16ns when temperature goes from 300 °K (26.85 °C) to 380 °K
(106.85 °C) [20]. Such temperature differences cause the endurance
of ReRAM devices to range from 4.14 × 108 to 1.07 × 107 writes. It
is necessary to carefully design the static allocation scheme to opti-
mize temperature behaviors of ReRAM-based PIM architectures.

3.2 Optimization Framework
Figure 4 shows the high-level overview of our proposed thermal-
aware memory allocation framework. The input of the framework
is the application program and PIM architecture characteristics
including the memory structure and the operating frequency. Our
framework first analyzes the application-specific requirements such
as in-memory arithmetic and search operations and the size of the
dataset. This information determines the number of banks required
for supporting different in-memory operations. Banks supporting
in-memory searches are marked as high power-consuming and
others are low power-consuming. The power consumption for dif-
ferent banks can be estimated based the static program analysis and
the maximum clock rate available in the PIM architecture. We map
each operation of the program to corresponding memory banks
and assume each bank continuously execute operations at a fixed
rate and each operation consumes a fixed amount of energy based
on the data size. Once the power consumption of each bank has
been decided, our framework explores different allocation schemes
to place these banks to different locations inside the PIM architec-
ture to optimize the temperature behavior. The exploration method,
which is based on the genetic algorithm, is introduced in the fol-
lowing section. We should note that the overhead of our proposed
optimization framework is non-trivial. However, applications we
target in this work do not change their characteristics frequently
over a long period of time. For example, a PIM architecture may be
configured to run image classification using HD computing with a
fixed set of class hypervectors for different images generated in the
real-world. The operations performed in each bank do not change
in this case. Therefore, our proposed exploration algorithm only
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Figure 4: The framework of thermal-aware data allocation.

introduces the overhead when the PIM architecture is configured
to run a completely new task.

3.3 Bank Placement Exploration
Since the energy consumed by search operations is much larger
than that consumed by other operations (e.g. normal memory op-
erations and in-memory arithmetic operations), we only focus on
allocating power-consuming banks which support in-memory as-
sociative searches. In order to efficiently explore the design space,
we propose a method based on genetic algorithm [28, 29], which
has been successfully applied in the design space exploration for
memory controller allocation. However, the number of possible
data allocations is extensively large, especially in a 3D stacking
architecture. Therefore, we propose a two-phase method to reduce
the complexity of exploration.

3.3.1 Initial States. In the first phase, we try to generate a set
of good initial allocation schemes to start the genetic algorithm
for exploration. We utilize the physical characteristics of the 3D
stacking structure, where the heat generated in lower layers is much
harder to be transferred to the cooling devices than in upper layers.
Furthermore, we should also avoid allocating several high power-
consuming ReRAM banks together to decrease the power density.
One of the initial allocation schemes is "chess-board" which has
been shown in Figure 3. The "chess-board" scheme divides memory
banks in one layer into two types, where "normal" type is only
available for non-search operations and "hot" type can be configured
as a high power-consuming bank. For each layer, we start filling
"hot" type banks based on the number of search banks assigned
to this layer. If all "hot" type banks have been allocated, we start
allocating high power-consuming banks to "normal" type banks.
We randomly generate different initial states, each of which assigns
different numbers of power-consuming banks to different layers. In
addition to "chess-board", we also use the "strike" allocation scheme
as the initial state and generate different combinations.

3.3.2 ExplorationMethod. The genetic algorithm is used to explore
thermal-friendly allocation schemes after the initial population has
been generated. We encode each data allocation scheme as a bit
vector, which represents the memory location of high/low power
consuming ReRAM banks. The "fitness" of the genetic algorithm
is the maximum steady temperature across all banks given by our
simulation infrastructure. During each "crossover" operation, two-
parent solutions are selected from the current population based on
"fitness" and a new solution is generated by randomly selecting
bits from parents. Then, each newly generated solution is mutated.
To utilize the observation that memory banks in upper layers are
usually cooler than those in lower layers, we swap a high power
consumingmemory bankwith a low power consuming bank located
in the same layer or any of the upper layers. In each generation,
we select multiple pairs of parent solutions and each pair generates
multiple new solutions to form the next generation. The algorithm
completes after a predefined number of generations, or there is no
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Figure 5: The original parallel search operation.

significant improvement in "fitness" in the current generation. We
test the overhead of running the proposed genetic algorithm in a
desktop with a 4-core Intel i7700k processor. The exploration for
one application can be finished within 6 hours which is affordable
for the off-line optimization.

4 DYNAMIC TEMPERATURE MANAGEMENT
Although the static data allocation optimizes the steady-state tem-
perature, the dynamic temperature may still exceed the temper-
ature limit to ensure a reasonable device working situation. As
mentioned in Section 1, the conventional Dynamic Thermal Man-
agement (DTM) methods, including DVFS, task allocation, and
memory remapping, are not suitable for the PIM applicationwith ex-
tensive associative searches. Therefore, we propose a configurable
in-memory search design as the control knob for fine-grained DTM.

4.1 Sub-Table Search
In order to reduce the power consumption of associative search in a
certain part of memory, we propose a configurable operation, called
sub-table search. The original in-memory search activates all rows
in the corresponding table in each bank as shown in Figure 5. Banks
storing the table are formatted to support in-memory associative
search operations and stored in a continuous memory address space.
Each search instruction is decoded to a set of bank instructions,
which can be processed by corresponding bank controllers. All
bank controllers can search data entries simultaneously. The search
operation contains a target value which can be decoded to search
values in different banks. By searching all rows in different banks
simultaneously, a normal search operation can be completed in
one cycle. The results of each search are stored in CAM sense
amplifiers (SA) in all related banks and can be accessed by following
instructions.

Unlike the original search operation, the sub-table search does
not activate all memory rows of a table simultaneously. Only a
subset of memory rows is activated during one clock cycle which
means the power consumption is decreased based on the portion
of activated rows. This enables us to only throttle the in-memory
search in hot banks without slowing down other operations. To
support sub-table search, a search instruction is decoded into mul-
tiple groups of bank instructions to complete the search operation
in multiple cycles as shown in Figure 6. Each group of bank instruc-
tions can be processed by corresponding bank controllers in one
cycle. Since the vault controller manages operations to banks in
the vault, a control table is added to each vault controller. Each
entry indicates the portion of memory rows activated during each
cycle when applying an in-memory search in the corresponding
memory bank. Since computing divisions during run-time is expen-
sive, we define several levels and add a level table for the controller
to look up how many rows should be searched. The level table is

Bank1 TargetV1 Row_S1 Row_E1

Bank2 TargetV2 Row_S1 Row_E1

BankMTargetVM Row_S1 Row_E1
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Figure 6: The proposed sub-table search operation.
Algorithm 1: Vault-level DTM based on sub-table search.

1: for each v inVaults do
2: max_temp=MaxBankTemp(v)
3: ifmax_temp > hot_temp then
4: DecreaseLevel(v .b .level , for b in v .Banks ) ▷ Decrease by one level if possible
5: else ifmax_temp < cool_temp then
6: IncreaseLevel(v .b .level , for b in v .Banks ) ▷ Increase by one level if possible
7: end if
8: end for

only initiated once when the program allocates a table in memory.
The vault controller calculates the number of rows for each level
based on predefined portions (0.3, 0.5, ..., 1) shown in the Figure 6.
In 4GM HMC design, each vault contains 8 banks and we assume
an 8-level setting is used. In this case, each control table consists
of 8 Level entries, and each Level can be represented by a 3-bit
value. Each level table contains 8 entries and the number of rows
can be represented by a 32-bit value. The area overhead for these
tables is 35 Bytes for each vault controller. We should note that the
bank-level control table is also applicable to more coarse-grained
control mechanisms which configure all banks in a vault with an
identical Level value.

4.2 Fine-grained Temperature Control
During runtime, vault controllers monitor the temperature of all
banks in the vault. We assume each memory bank has one digital
thermal sensor, which is similar to the design used in previous
work [20]. The proposed sub-table search enables us to design a
fine-grained DTM which only slows down in-memory searches in
specific memory banks without hurting the performance of other
operations. The granularity of our proposed DTM is vault, which
consists of 8 banks based on the 4GB HMC design [16]. There
are two reasons to utilize vault-level control. First, existing 3D
memory systems usually divide the control of memory by vault.
Vault-level DTM does not require changes to either bank-level
or block-level control which may introduce significant overhead.
Second, a vault consists of banks throughout all layers in the system
which make DTM more effective to control the temperature of
different layers. On the contrary, a bank-level DTM may fail to
control the temperature when all search-intense banks are near
the cooling system. In this case, it is hard to control temperatures
of "normal" banks in lower layers by throttling "search" banks in
higher layers.

We utilize the step-wise method for our proposed vault-level
DTM, as shown in Algorithm 1. If the highest temperature of a vault
is higher than a predefined "hot" threshold, the operating state of
all banks in the vault decreases by one level. The operating state
relates to the portion of rows searched in each cycle. Similarly, if
the highest temperature of a vault is lower than a predefined ’cool’
threshold, the operating state of all banks in the vault increases by
one level. We define 8 levels for configuring the sub-table search
operations, which range from 10% to 100%. Since the DTM cannot
take effect immediately, the "hot" threshold is set slightly lower than
the critical temperature. Furthermore, the "cool" threshold is slightly
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Table 1: PIM architecture parameters

PIM Architecture HMC 2.1, 4GB, 312.50MHz, ReRAM bank: 16MB,
#Banks/Vault: 8, #Vaults: 32

Memory Parameters Resistive memory: 0T-2S, Technology: 45nm

Table 2: Thermal simulation parameters
Heat Sink Specification

Convection Capacitance 140.4 J/K
Convection Resistance 0.1 K/W
Conductivity 400W /mK

Stack Dimension
Heat Sink 6.0 × 6.0 × 0.69cm3

Thermal Interface Material Layer (TTSV & TSV-bus) 50µm
Silicon Layer (Si & TTSV & TSV-bus) 13.7 × 13.8 × 0.1mm3

ReRAM Layer (Metal & TTSV & TSV-bus) 13.7 × 13.8 × 0.02mm3

D2D Layer (Air & Micro-bumps) 20µm
Logic Layer (Silicon) 13.7 × 13.8 × 0.1mm3

Table 3: Application Characteristics
HD # Encoding Ops # Classes Query Ops # Entries

FACE 617 2 QUERY1 MIN/MAX Search 4M
SPEECH 516 26 QUERY2 TOP K Search 6M
PAMAP 75 12 QUERY3 Exact Search 8M
MNIST 784 10

lower than the "hot" threshold to prevent frequent fluctuations. The
management interval for the proposed DTM is 100ms.

5 EXPERIMENTS

5.1 Experiment Setup
We implemented a cycle-accurate simulator which simulates ap-
plication with support of PIM-based instructions. The power con-
sumption and latency of architectural components are calculated
based on McPAT [30] and Cacti [31]. For hardware characteristics
of PIM logic, we use HSPICE design tool for circuit-level simula-
tions and to calculate energy consumption and performance of all
the memory blocks. The energy consumption and performance
is also cross-validated using NVSim [32]. The PIM architecture
parameters are listed in Table 1. We integrate a widely-used vali-
dated thermal simulator, HotSpot [33], with our in-house simulator
which generates dynamic power traces. Table 2 shows the detailed
HotSpot configuration used in this work. The detailed floorplan of
stacking architecture is similar to the previous work which deploys
thermal-friendly TSVs to optimize the heat transfer capability [21].

We explore the efficiency of our static and dynamic manage-
ment policy on the temperature distribution and performance of
both machine learning and database applications. For each appli-
cation, we assume a PIM architecture is fully utilized, thus search
operations are performed continuously in memory blocks. For HD
computing, we explore the impact of running four popular applica-
tions including face recognition (FACE) [34], speech recognition
(SPEECH) [35], activity monitoring (PAMAP) [36], and image clas-
sification (MNIST) [37]. For query processing, we have tested PIM
architecture by running the supported queries in [11]. Specifically,
we construct data tables with various sizes and run different sets of
query tasks, which are denoted as QUERY1, QUERY2, and QUERY3
in our experiments. Table 3 summaries characteristics of all appli-
cations.

5.2 Thermal Simulation Validation
We validate simulation results from HotSpot with a commercial
electronics cooling simulation software [38]. We model the de-
tailed ReRAM crossbar structure and thermal characteristics of
materials based on published works [12, 39]. The materials used
for ReRAM and diode are Ni/H f O2/PT and Ti/TiO2/Pt respec-
tively. We model the cooling system based on a state-of-the-art
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Figure 7: The exploration results of static data allocation.
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grained DTM when running SPEECH application.
air cooling solution. Specifically, the size of the cooling system is
60mm×60mm×7mm, which consists of a 3mm subtract and 15×15
fins. The ambient temperature is set as 25 °C and the heat can be
transferred through all surfaces except the bottom. The validation
results show that the average error compared to the commercial
software is within 7%.

5.3 Data Allocation Exploration
Figure 7 shows results of off-line thermal-aware memory allocation
for different applications. We only show memory the allocation
scheme with the minimum steady-state temperature, and two initial
allocation schemes - "Chess" and "Strike". The results show that the
best allocation scheme explored by our proposed genetic algorithm
can reduce the steady-state temperature at least 15.3 °C on average
compared to intuitive allocation schemes. Such results show that
carefully allocating different tasks to PIM memories can lead to
significant temperature reductions. Based on the temperature re-
sult, we estimate the lifetime of each solution based on Equation 1.
The value of UFUS is set as 4 and the write latency tw is estimated by
the formula and material-specific characteristics published in the
previous work [20]. Figure 7 shows the endurance enhancement
provided by temperature reductions. Compared to the "Chess" allo-
cation scheme, our algorithm can extend the endurance by 57.2%
on average.

5.4 Effect of DTM
As we showed in the static management, the endurance of PIM ar-
chitecture can vary when running different applications. Dynamic
thermal management is a critical method to dynamic thermal be-
haviors of the PIM architecture. Figure 8 shows the effect of our
proposed fine-grained DTM on HD computing running speech
recognition task. We set the critical temperature as 85 °C. In order
to provide enough time for DTM to control the temperature and
avoid frequent fluctuations, we set the control temperature and the
recovery temperature as 84 °C and 83 °C respectively. The result in
Figure 8 shows that our proposed fine-grained DTM can effectively
control the temperature under a predefined critical temperature.

5.5 Comparison with Other DTM Methods
Other than controlling the temperature, the proposed DTM is also
designed to reduce the performance degradation of coarse-grained
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Figure 10: The performance improvement of the proposed
DTM over DVFS-F in different data allocation schemes.

DTMmethods. We compare the performance of our proposed DTM
(sub-table-search (STS)) running on the best data allocation scheme
with several baselines including a coarse-grained DVFS (DVFS) [18],
a fine-grained DVFS with the capability of controlling frequency
of different vaults (DVFS-F ), and bank-level operation delaying
method (DELAY ) which reduce the number of memory operations
in hot banks [20]. We should note the DELAY method should set a
low trigger temperature to ensure the cooling effect (10 °C lower
than the critical temperature reported in the prior work [20]). Since
applications show significantly different temperatures, we adopt
different critical temperature thresholds tomake sure all DTMmech-
anisms are triggered. For example, the critical temperature set for
FACE, PAMAP and MNIST is 55 °C, while the critical temperature
set for other applications is 85 °C. We use the best data allocation
schemes found by our static exploration for all mechanisms.

Figure 9 shows the performance speedup of different DTMs as
compared to the coarse-grained DVFS. The results show that our
proposed DTM results in 39.7%, 17.6%, and 26.3% speedup as com-
pared to DVFS, F-DVFS, and DELAY respectively. This performance
improvement over coarse-grained DVFS (DVFS) mainly comes from
removing unnecessary throttling actions in the cool part of memory.
In addition, our approach beats the fine-grained DVFS (DVFS-F),
since DVFS slows down operations on even on the banks without
intensive in-memory search. Even though DELAY exploits a more
fine-grained control, its very low trigger threshold degrades the
PIM performance significantly.

5.6 DTM for Different Data Allocation Schemes
Figure 10 shows the result of running our proposed DTM and
the fine-grained DVFS (DVFS-F) in the "Strike" and "Chess" data
allocation schemes. The average performance improvements of our
proposed method in these two configurations are 7.0% and 17.8%
respectively. Our evaluation shows that the proposed approach
can beat other methods in various data allocation schemes. The
performance benefit provided by our approach depends on the
distribution of power consumption.

6 CONCLUSION
In this work, we target to solve the temperature issues existing in
the emerging PIM applications which require a large amount of high
power-consuming in-memory search operations. We extensively
explore the design space of the off-line data allocation schemes
in a multi-layer PIM architecture to find the best temperature-
friendly memory allocation by an efficient and effective algorithm.
Furthermore, we propose a configurable in-memory search design
and, a fine-grained dynamic thermal management for controlling
the dynamic temperature behaviors of the PIM architecture. Based

on the experimental result, our proposedmethod reduces the steady-
state temperature and extends the device lifetime significantly. The
proposed fine-grained DTM improves the performance of the state-
of-the-art DTM method by 17.6%.
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