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Abstract—In this paper, we design a non-volatile approximate
lookup table, called NVALT, to significantly accelerate GPU com-
putation. Our design stores high frequency input patterns within
an approximate NVALT to model each application’s functionality.
NVALT searches for and returns the stored data best matching
the input data to produce an approximate output. We define
a similarity metric, appropriate for binary representation, by
exploiting the analog characteristics of the non-volatile content
addressable memory. Our design controls the ratio of the applica-
tion running between the approximate NVALT and accurate GPU
cores in order to tune the level of accuracy necessary for user
requirements. Our evaluations on seven general GPU applications
shows that, NVALT can improve energy computation by 4.5× and
performance by 5.7× on average while providing less than 10%
average relative error as compared to the baseline GPU.

Index Terms—Non-volatile Memory, Content Addressable
Memory, GPU, Approximate Computing.

I. INTRODUCTION

INTERNET of Things (IoT) increases the number of smart
devices and the rate of data generation around the world [1],

creating a significant demand for high speed and efficient
parallel processors such as GPU. However, GPUs cannot
learn existing patterns in workload and adaptively process the
data [2]. When repeatedly running a single application, e.g.
Fast Fourier Transform, on a GPU for different input data,
the GPU performs a set of computations repeatedly without
learning the functionality. By performing non-conventional
brain-like computation, e.g. Neural network and neuromor-
phic computing solutions perform, the cores avoid costly
repeated computations by learning sets of functionality and
approximately model them [3]. This technique is effective
for applications which can accept a level of approximation.
Many real world algorithms, such as machine learning, are
statistic in nature and will accept some inaccuracy in their
computation. Several image and video processing applications
accept error in computation without losing the precision re-
quired by user [2]. We add an efficient brain-like processing
unit beside the GPU cores to accelerate the computation with
approximation techniques.

Prior work tried to improve efficiency and accelerate the
GPU/CPU computation by enabling approximation such as
voltage over-scaling [4], precision scaling [5], designing ap-
proximate circuits [6], [7], and memoization using resistive
acceleration [8], [9], [10], [11], [12]. Work in [3] accelerates
programs by utilizing a neural network placed beside the
GPU cores to produce approximate results. Although in CPU
this technique provides a large energy/performance improve-
ment [14], the advantage of neurally-based approximation in
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GPU is minor. Several other designs use the high density and
zero leakage power of non-volatile memories for memoization
or enabling approximation in GPU and CPU cores [8], [10],
[13]. Work in [8] enabled GPU approximation by using CAMs
beside floating point units (FPUs) and approximately retrieving
data at run-time. This is a promising technique to save the
GPU energy, but it cannot improve the performance, and also
does not have a large impact on the overall GPU energy
consumption, considering data movement and other non-FPU
units.
In contrast, we propose a hardware approximation technique
that uses resistive content addressable memories to accelerate
the GPU computation. We exploit the analog characteristics
of the non-volatile approximate lookup table, called NVALT,
with nearest distance search capability. Our design learns and
models the functionality of different applications by storing
high frequency patterns for each application on an NVALT. At
run-time, instead of processing data on the inefficient GPU
core, our design searches NVALT to find the data most similar
to the input operands. Our similarity metric considers the
impact of each bit index to provide the best match. Our experi-
mental evaluation on AMD Southern Island GPU architecture,
running seven different applications, shows the enhanced GPU,
as compared to the baseline GPU, can achieve 5.7× energy
and 4.5× performance improvement, while providing less than
10% quality loss.

II. PROPOSED NVALT

A. NVALT Program Acceleration

GPU workloads exhibit significant data similarity and local-
ity. This locality increases as we go through the IoT domain
with larger datasets. Several basic programs, such as Fast
Fourier Transform (FFT) or image processing applications,
consist of repeated building blocks, where each has many ad-
dition and multiplication operations. Running these algorithms
on the conventional processors (e.g. CPU or GPU) is slow and
requires large energy consumption. These applications can be
approximately processed on the NVALT block. We exploit data
locality to model several basic functions on the GPU with a
fast and efficient approximate computing unit.

Fig.. 1 shows the overview of the structure of AMD South-
ern Island GPU, enhanced with NVALT accelerators. NVALT
blocks are placed along side of each SIMD lane. When the
approximate application is launched on GPU, the scheduler
block runs the application on an NVALT block instead of
sending them to GPU cores to process. An NVALT block
approximately processes these basic functions inside a lookup
table instead of precisely processing them. NVALT uses offline
profiling for each program to find and store common input
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Fig. 1. The overview of the enhanced GPU with approximate NVALT block

patterns and the corresponding outputs. At runtime, our design
searches the input data stored in the NVALT and returns the
most similar pattern as an approximate output. The accuracy
of depends two main metrics:

• Similarity metric: In traditional cores the numbers rep-
resent by the fixed-point or floating point binary values,
where the definition of similarity can be different based
on representation. For instance, our prior work [10]
considers Hamming distance as a metric to find the most
similar row in a lookup table. This metric cannot provide
high computation accuracy because it does not consider
the impact each bit index has on the computation. Design-
ing a lookup table/CAM which can find the exact nearest
value requires large and inefficient peripheral circuitry. In
this work we propose a simple technique which changes
the weight of each bit index on the CAM structure and
considers the binary weights on the search operation. We
detail the implementation in Section II-B.

• NVALT size: The lookup table size directly impacts the
computation accuracy. A large size NVALT can store a
large number of patterns and increase the chance of a
close match. Larger lookup tables result in the increase
energy and degraded performance.

NVALT works for the applications which accept approxi-
mation in their computation. Applications must have limited
number of input/output signals to efficiently fit within the
NVALT table. We model the computation of these applications
by storing their highly frequent input/output patterns inside a
table. Profiling mode examines of the input data to find the
most common occurrences.

Our evaluation shows that running all applications on the
approximate NVALT may not result in high energy saving
or speedup. We need to increase the size of the NVALT to
store a sufficient number of patterns to ensure the acceptable
computation accuracy. The increased size reduces the energy
and performance efficiency that NVALT achieves during the
search operation. The low energy and performance advantage
of neural network-based GPU acceleration in [3] comes from
using large and inefficient neural network blocks to provide
enough computation accuracy. To address this issue, our paper
provides configurable GPU approximation, where a fraction of
data runs on the accurate GPU core, while the rest is run on
the approximate NVALT. Our design calculates the distance of
the input data with the stored value on the NVALT, and if the
distance is larger than a threshold (> T HR), it dynamically
assigns this input data to an accurate core. The value of T HR
is determined based on the application type and user accuracy
requirement.
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Fig. 2. The structure of CAM in NVALT block capable of searching for
nearest distance row.

B. NVALT Hardware Support
A conventional CAM consists of a CAM cell array, row

driver, input buffer, and sense amplifier. Before each search op-
eration, the match lines (ML) of all CAM rows are precharged
to V dd. During the search operation, input data is distributed to
all CAM rows using an input buffer. This buffer strengths the
input signals to ensure all rows receive the input signals at a
similar time. During the search operation, the MLs in all CAM
rows are discharged as long as at least one bit difference exists.
We use a timing characteristic of ML discharging current to
differentiate rows with different number of mismatches. In
conventional CAM, any cell with mismatch discharges the
ML. A larger number of mismatches results in a higher ML
voltage drop, which can be detected by the sense amplifier. To
detect a row with minimum mismatch, i.e., closest Hamming
distance row, we need to find the row which discharges last.
The sense amplifier tracks the ML voltages in all rows, until
it find the slowest discharging one. The design is complicated
and requires additional circuity, such as counters, while also
taking a long time to determine the best matched row.
To address this issue, we use inverse CAM, proposed in [10],
to design a CAM with nearest distance search capability. The
CAM cells in our proposed NVALT work inversely, compare
to the conventional CAM. Fig. 2 shows the functionality of
NVALT cells storing inverse resistance values in match and
mismatch cases. NVALT cell discharges the ML in case of
matching data to the stored values, while a mismatch ML stays
charged. A row which has more matched bits, i.e., a closest
Hamming distance row, creates a faster ML discharging current
than other rows. We detect the nearest distance row by finding
the first row to discharge the ML.

Fig. 2 shows a CAM in single NVALT stage which is capable
of searching for the row with the closest value to the provided
inputs. The proposed NVALT consists of an input buffer, a
row driver to selectively precharge ML of each row, and a
sense amplifier to detect the first discharged row. Unlike other
designs which use the hamming distance criteria, our design
considers the impact of each bit index on the search operation
of the NVALT block. We exploit different access transistor sizes
for different bit indices. Based on the binary weight of an
unsigned integer value, each cell in position ith has access
transistors which are 2× larger than the cell in the i − 1th

adjacent bit. This results in 2× higher ML discharging current
in each match cell compared to its adjacent least significant
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TABLE I
TUNING ACCURACY IN ROW-TUNABLE NVALT BLOCK

.
# of rows 128 256 512 1024 2048

BlackScholes 21% 13.1% 7.2% 4.0% 1.2%
FFT 8.3% 5.9% 3.1% 1.9% 0.7%
Sobel 13.4% 6.4% 4.2% 2.1% 1.4%

Inversek2j 17.3% 12.0% 8.3% 5.1% 2.9%

bits (LSB). The asymmetric access transistors weight each bit
index on the search operation to find the closet row.

III. EXPERIMENTAL RESULTS

A. Experimental Setup
We evaluate the efficiency of the proposed NVALT on

the AMD Southern Island GPU, Radeon HD 7970 device,
which is a recent GP-GPU architectures. We modified the
source code of Multi2sim, a cycle-accurate simulator [15], to
integrate the NVALT within GPU. We used McPAT tool [16], to
measure the energy consumption of GPGPU and other changes
on the GPU architecture, including the registers and FIFO
(4KB/SIMD). We also used CACTI to measure the energy
consumption of the memory keeping the highly frequency
patterns corresponding to each application. To measure the
power consumption of the NVALT, we use HSPICE circuit
level simulation in 45nm TSMC technology. We use VTEAM
memristor model [17] for our memory design simulation with
RON and ROFF of 10kΩ and 10MΩ respectively. In terms of
reliability, the endurance of resistive memory limits to 107

write operations, our design addresses this issue by limiting
the number of writes to once for each application. We compare
the efficiency of proposed design by running seven general
OpenCL applications: BlackScholes, FFT, Sobel, inversek2j,
Laplacian, Convolution and Binarization.

B. NVALT Accuracy Tuning
NVALT can be used next to GPU SIMD lanes to approxi-

mately process different applications. We use the approximate
building block as a stand-alone computing unit to approx-
imately process the desired applications. In this mode, the
NVALT accuracy tunes using the size of the table that we are
using. As we explained in section II, there is an efficiency and
accuracy trade-off in choosing the best NVALT size to process
the data. Small size table can provide significantly higher
energy savings and performance improvement at the cost of
decreased accuracy. Increasing the table size increases the
computation accuracy by storing more common patterns, thus
increasing the possibility of close hit. However, NVALT with
many rows requires larger interconnects and column drivers to
distribute the data simultaneously among all CAM rows. This
energy overtakes the search energy (the energy consumed by
the array), for CAM larger than 1024 rows.

Our design is able to dynamically change the number of
active rows on the NVALT (128-row granularity) in order to
get the maximum accuracy for each application. We enable this
functionality by chaining the structure of the row driver. Fig 3
shows the energy and performance improvement of four gen-
eral applications on the proposed enhanced hardware. For each
CAM size, the energy and performance have been normalized

to the conventional GPU not using NVALT. Table I shows the
computation accuracy of each application for different CAM
sizes. Our result shows the applications have different accuracy
sensitivity to the NVALT size, as each application requires
a different number of rows to provide acceptable quality of
service. To achieve less than 10% quality loss, our design
needs to use an NVALT up to 512 rows. The result shows
that our design achieves 5.3× energy improvement and 3.2×
speedup, when selecting the optimal NVALT size for each
application. The main issue of the row tuning technique is its
weakness in providing energy/performance advantage for high
quality computation. To provide less than 4% quality loss, our
design does not save energy energy or performance.

C. GPU-NVALT computing

To address the quality issue in row tuning technique, we
need to understand why very large NVALT blocks still result in
sizable error. NVALT shows high error running inputs that have
low similarity to the stored values. Although the percentage
of data with low similarity makes up a small fraction of
each workload, the impact of them on accuracy is high. In
most cases, these infrequent patterns of low similarity data
are the main information of the input. For example, in image
processing, the image edges have the low frequency compared
to the image background, but the edges contain the main
information of image. To improve the NVALT accuracy, our
design dynamically finds the far input values and assigning
them to accurate SIMD cores to process. The ratio of running
data on the approximate and precise core determines the level
of accuracy that our design can achieve. Fig 4 shows the
maximum energy improvement and speedup that our design
can achieve in each NVALT size when the threshold value
changes. The T HR has been set in order to ensure that GPU
quality loss is less than 4%. The top y-axis in the figure shows
the percentage of time the application runs on CAM for a
given T HR value. Our evaluation shows that, in small NVALT
size, we need to run larger portion of data on the precise
GPU core in order to guarantee the computation accuracy
satisfies the required level. By contrast, in large size, the
NVALT can provide enough computation accuracy even using
very large threshed value. We consider energy-delay product
(EDP) to find the optimal CAM size resulting in the best
efficiency. Our evaluation shows that 256-row CAM results
in the best efficiency of 4.4× energy improvement and 3.4×
speedup across the seven tested applications (normalized to
conventional GPU).

In all applications, 4% quality loss does not show the
acceptable quality of service. Therefore, we change the THR
value for each application to see the efficiency of the NVALT
in different level of accuracy. Table II shows the energy-delay
product improvement (Normalized to GPU) that our design
can achieve for different quality loss from 2% to 10%, as
the NVALT size changes. The result shows that our design
can tune the level of approximation by partially running the
application on NVALT and accurate GPU core. Our result
shows that NVALT works much more efficiently for appli-
cations which can accept large approximation. For instance,
by accepting 6% error, the NVALT can achieve up to 3.7×
speedup, while this number decreases to 1.4× to achieve 1%
quality loss. Fig 5 shows an example of tuning when running
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(d) inversek2j
Fig. 3. Energy improvement and speedup of the NVALT in different sizes.
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Fig. 4. Energy improvement, speedup and EDP of enhanced-GPU with NVALT in different CAM sizes while ensuring less than 4% quality loss.

TABLE II
ENERGY-DELAY PRODUCT IMPROVEMENT OF THE ENHANCED-GPU WITH

NVALT IN DIFFERENT QUALITY LOSS

.
Quality loss 1% 2% 4% 6% 8% 10%

Best CAM size 1024-row 512-row 256-row 256-row 128-row 128-row
BlackScholes 1.1× 3.2× 7.3× 10.2× 12.3× 14.7×

FFT 2.7× 6.3× 13.9× 20.5× 23.9× 30.1×
Sobel 2.9× 9.9× 27.7× 38.6× 45.5× 54.0×

inversek2j 1.0× 2.8× 5.7× 8.4× 10.3× 13.3×
Laplacian 3.1× 5.2× 8.4× 12.3× 14.9× 19.3×

Convolution 8.6× 21.2× 32.8× 45.8× 61.4× 79.3×
Binarization 2.9× 5.8× 9.3× 13.5× 17.0× 22.1×

Average 3.2× 7.6× 15.0× 21.3× 26.5× 33.2×

21

Original Image Exact Sobel 100% CAM 85% CAM, 15% GPU

Fig. 5. Output quality of Sobel application when the application completely
or partially runs on NVALT.

an image through the Sobel application. When the image
runs completely on NVALT it shows noticable degredation,
but when it runs partially on GPU, the result shows little
observable difference between the baseline GPU output image
and the tuned approximate output image. The majority of an
application’s data can be accelerated on approximate NVALT
and only small portion needs to run on precise cores.
NVALT uses a single CAM block to accelerate all applications.
Our design reconfigures the NVALT to accelerate applications
based on the current application running on GPU. The area
efficiency is one of the main advantages of using resistive
memory. This technology provides the cell density of 8F2 (F
is feature size). Using CAM with 256 rows required 530µm2.

IV. CONCLUSION

This paper proposes a hardware approximation technique
which accelerates programs in the GPU architecture. We
design a non-volatile approximate lookup table (NVALT) with
the capability of searching for the nearest distance row.
NVALT approximately models computation by storing high

frequency patterns corresponding to each application. Our
NVALT searches and returns a stored value with the most
similarity to the input data. Our design can tune the level of
approximation, by dynamically splitting input data between the
approximate NVALT or accurate GPU cores. Our experimental
evaluation running seven general applications on AMD GPU
shows that NVALT can improve the GPU energy computation
by 4.5× and performance by 5.7× on average while providing
less than 10% average relative error, as compared to the
unmodified GPU.
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