
GrapHD: Graph-based Hyperdimensional
Memorization for Brain-Like Cognitive
Learning
Prathyush Poduval, Haleh Alimohamadi, Ali Zakeri, Farhad Imani, Hassan
Najafi, Tony Givargis, and Mohsen Imani

Correspondence*:
Mohsen Imani
m.imani@uci.edu

ABSTRACT

Memorization is an essential functionality that enables today’s machine learning algorithms to
provide a high quality of learning and reasoning for each prediction. Memorization gives algorithms
prior knowledge to keep the context and define confidence for their decision. Unfortunately, the
existing deep learning algorithms have a weak and nontransparent notion of memorization.
Brain-inspired HyperDimensional Computing (HDC) is introduced as a model of human memory.
Therefore, it mimics several important functionalities of the brain memory by operating with a
vector that is computationally tractable and mathematically rigorous in describing human cognition.
In this manuscript, we introduce a brain-inspired system that represents HDC memorization
capability over a graph of relations. We propose GrapHD, hyperdimensional memorization that
represents graph-based information in high-dimensional space. GrapHD defines an encoding
method representing complex graph structure while supporting both weighted and unweighted
graphs. Our encoder spreads the information of all nodes and edges across into a full holistic
representation so that no component is more responsible for storing any piece of information
than another. Then, GrapHD defines several important cognitive functionalities over the encoded
memory graph. These operations include memory reconstruction, information retrieval, graph
matching, and shortest path. Our extensive evaluation shows that GrapHD: (1) significantly
enhances learning capability by giving the notion of short/long term memorization to learning
algorithms, (2) enables cognitive computing and reasoning over memorization graph, and (3)
enables holographic brain-like computation with substantial robustness to noise and failure.

Keywords: Brain-inspired Computing, Hyperdimensional Computing, Neuromorphic Computing, Machine Learning, Memorization

1 INTRODUCTION
We face increasing needs for efficient processing for diverse cognitive tasks using a vast volume of generated
data (Chen and Lin, 2014; Bonomi et al., 2012). Therefore, there is a crucial need for scalable algorithms
to learn and reason about each prediction on today’s embedded devices. Particularly, memorization is an
essential functionality that enables today’s algorithms to provide a higher quality of learning and reason
for each prediction or decision. Memorization gives learning and information processing algorithms prior
knowledge to keep the context and define confidence. Unfortunately, existing deep learning algorithms
have a weak and nontransparent notion of memorization. Although Recurrent Neural Network (RNNs) and

1

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Long Short-Term Memory networks (LSTMs) incorporate memorization, they are very difficult to train
and still not fully transparent to explore on prior knowledge (Pascanu et al., 2013; Sodhani et al., 2020).

There are also other crucial challenges with existing memorization techniques. Running algorithms that
incorporate memorization (e.g., RNNs and LSTMs) often results in extremely slow processing speed and
high energy consumption or needs a large cluster of application-specific integrated chips (ASIC), e.g., deep
learning on Google TPU (Jouppi et al., 2017). This computation complexity is beyond the capability of
resource-constraint embedded devices. In addition, edge devices often rely on unreliable battery-based
sources, fault-tolerant memory and logics, and noisy wireless communication (Van Kranenburg and Bassi,
2012; Lee and Lee, 2015). Unfortunately, today’s algorithms require high precision training and have
almost no robustness to such noise and failure. For example, the existing RNNs and LSTMs require
high-precision floating-point representation to train (Micikevicius et al., 2017; Courbariaux et al., 2014).
This makes these algorithms highly sensitive to possible noise or failure.

Recently, HyperDimensional Computing (HDC) has been introduced as an alternative computational
model that mimics important brain functionalities towards high-efficiency and noise-tolerant
computation (Kanerva, 2009). Unlike deep learning, HDC is a model of the Cerebellum cortex that
biologically represents human memory. HDC is motivated by the observation that the cerebellum cortex
operates on high-dimensional data representations Zou et al. (2021a). In HDC, objects are thereby encoded
with high-dimensional vectors, called hypervectors, which have thousands of elements (Imani et al.,
2019b; Rahimi et al., 2016b; Imani et al., 2017a). HDC incorporates learning capability along with typical
memory functions of storing/loading information. It mimics several important functionalities of the human
memory model with vector operations which are computationally tractable and mathematically rigorous
in describing human cognition. The natural memorization capability enables HDC to provide several
advantages as compared to the conventional deep learning solutions: (1) HDC is suitable for on-device
learning based on hardware acceleration due to its highly parallel nature (Imani et al., 2017c; Li et al., 2016;
Hernández-Cano et al., 2021), (2) hidden features of information can be well-exposed, thereby empowering
both training and inference with the light-weight computation and a small number of iterations (Rahimi
et al., 2016a; Mitrokhin et al., 2019), and (3) the hypervector representation inherently exhibits strong
robustness against the noise and corrupted data (Frady et al., 2020; Frady and Sommer, 2019; Imani et al.,
2017c).

HDC has been employed as a part of many applications, including genomics (Kim et al., 2020; Poduval
et al., 2021a), signal processing (Karunaratne et al., 2021), robotics (Mitrokhin et al., 2019; Neubert
et al., 2019), and sensor fusion (Räsänen and Saarinen, 2015), manufacturing Chen et al. (2021), and
detection/recognition tasks Genssler and Amrouch (2021). Although HDC is a memory model, existing
algorithms do not well exploit HDC memorization capability. For example, in all existing HDC algorithms,
memorization has a weak definition of information accumulation. However, as has been shown by
neuroscientists, the brain has a more complex definition (Hassabis et al., 2017; Chai et al., 2018; O’reilly
and Munakata, 2000). Our brain naturally clusters data and represents information as a graph structure,
where objects and edges show the correlation between objects (Wiecki et al., 2015; Bassett and Sporns,
2017). Over time, these memory graphs get larger and more complex while the brain automatically forgets
or approximates old information (Chien and Honey, 2020). In addition, the brain has a highly approximate
but ultra-fast mechanism to retrieve information (Schacter and Slotnick, 2004). Although we can implement
and represent a graph using existing database and graph processing systems (Lumsdaine et al., 2007; Sahu
et al., 2017), such a system will be highly complex, costly, non-scalable, and far from biological systems.

2

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Prior research works have already attempted to use vector symbolic architecture and hyperdimensional
computing to represent and process graph knowledge. Work in (Gayler, 1998) exploited hyperdimensional
computing for graph representation. This method is designed specifically for graph isomorphism and
cannot support complex information extraction from graph representation. Work in (Ma et al., 2018) used
holographic reduced representation (HRR) to map graphs into high-dimensional space. However, this
approach relies on external learning algorithms, i.e., neural networks, to extract knowledge from the graph.
As a result, the HRR encoding mainly acts as a latent space encoding rather than a memory to store graph
information. Another existing direction focused on finding a graph embedding in real vector space (Nickel
et al., 2016). By characterizing the similarity of the nodes using some loss function, the dot product between
vectors is proportional to the similarity, which can be used for knowledge learning. However, this approach
is quite costly as it requires gradient descent. In addition, it is not suitable for graph memorization.

This paper defines a brain-inspired system that better represents HDC memorization capability. We
introduce, GrapHD, a graph-based hyperdimensional system that encodes graphs into high-dimensional
space and enables reasoning on that graph. We use high-dimensional vectors to holographically represent
the nodes and memorize the graph. GrapHD enables several cognitive functionalities to operate over
compressed encoded graph directly. The main contributions of the paper are listed as follow:

• GrapHD defines an encoding method that represents complex graph-based data structure into high-
dimensional space. GrapHD supports a wide range of memory graphs, including weighted and
unweighted graphs. Our encoder spreads the information of all nodes and edges across into a full
holistic representation so that no component is more responsible for storing any piece of information
than another. This brain-like holographic representation enables us to define highly efficient and robust
cognitive operations over the encoded graph without accessing original data.

• Using this memorization model, we introduce an inference process that can be used to recover the
graph information from graph hypervector. Our reconstruction process is iterative in nature and relies
on noise prediction and cancellation. GrapHD defines several important cognitive functionalities over
the encoded memory graph. These operations include memory reconstruction, information retrieval,
graph matching, and shortest path.

• We propose the idea of graph refinement that increases the capacity of memorization. Inspired by
human memorization, refinement iteratively checks and strengthens the already known knowledge.
This ensures that the known information, e.g., graph nodes and their connections, is well memorized.
We design a statistical model that mathematically defines the capacity of a hypervector to perform the
tasks mentioned earlier.

• We also develop an in-memory architecture that operates as a tensor processor to accelerate GrapHD
computation. Our architecture supports row-parallel NOR-based operation over binary vectors stored in
non-volatile memory. Then, we extend it to enable complex operations and accelerate various GrapHD
applications.

We evaluate GrapHD on a wide range of applications. Our evaluation shows that GrapHD memorization
capability not only enhances the reasoning capability of existing machine learning systems but also
improves the learning accuracy. For example, we offer GrapHD application to enhance the existing CNN
model for the object detection task. Our results show that GrapHD achieves 3.8× faster training and 1.7×
faster inference than RNN, while ensuring the same classification accuracy. Our evaluation also shows
that our in-memory accelerator achieves 30.4× faster and 61.5× higher energy efficiency as compared to
NVIDIA 1080 GPU. We also run GrapHD operations with the Nengo SPA module Bekolay et al. (2014)

Frontiers 3

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

to simulate how GrapHD can be adapted for Neuromorphic hardware, and use it to run our novel error
correcting decoding process. This provides feasibility for GrapHD model to be used as the encoding for
Neuromorphic models of the brain. An example where this can be used is SPAUN Stewart et al. (2012),
which is a spiking neural network which can perform multiple tasks without requiring re-wiring. SPAUN
encodes the query information using Semantic Pointer Architecture which is then fed into the neural
network, and GrapHD can be used as the encoder to better memorize relationships and correlations thus
expanding the cognitive abilities of SPAUN. A few examples where a graph representation is natural is
analysing relationships in social media and knowledge graph representations Bi et al. (2019); Chian et al.
(2021); Pitas (2016). Our model can also be used in graph constructions, where the Spiking Neural Network
is supposed to construct graph representations of data, or to construct certain sub-graphs and clusters of an
input graph based on certain rules and correlations.

2 PRELIMINARY
Hyperdimensional Computing: The brain’s circuits are massive in terms of numbers of neurons and
synapses, suggesting that large circuits are fundamental to the brain’s computing. Hyperdimensional
computing (HDC) (Kanerva, 2009) explores this idea by looking at computing with ultra-wide words – that
is, with very high-dimensional vectors or hypervectors. The fundamental units of computation in HDC are
high dimensional representations of data known as “hypervectors”, which are constructed from raw signals
using an encoding procedure. There exist a huge number of different, nearly orthogonal hypervectors
with the dimensionality in the thousands (Kanerva, 1998; Ge and Parhi, 2020). This lets us combine
such hypervectors into a new hypervector using well-defined vector space operations while keeping the
information of the two with high probability. Hypervectors are holographic and (pseudo) random with i.i.d.
components. A hypervector contains all the information combined and spread across all its components in
a full holistic representation so that no element is more responsible for storing any piece of information
than another.

In recent years, HDC or in general vector symbolic architecture has been employed in a range of
applications, such as classification (Kanerva et al., 2000; Zou et al., 2021b; Ge and Parhi, 2020), activity
recognition (Kim et al., 2018), biomedical signal processing (Moin et al., 2021), multimodal sensor
fusion (Räsänen and Saarinen, 2015), distributed sensors (Kleyko and Osipov, 2014; Kleyko et al.,
2018), voice recognition (Imani et al., 2017b), genomics (Kim et al., 2020; Poduval et al., 2021a),
regression (Hernández-Cano et al., 2021), and privacy Hérnandez-Cano et al. (2021). For example, work
in (Simpkin et al., 2017) used vector symbolic architecture for representing and orchestrating complex
decentralized workflows. Work in (Rallapalli et al., 2019) developed a novel embedding mechanism for
single graph nodes that co-learns graph structure and textual descriptions. A key HDC advantage is its
training capability in one or few shots, where object categories are learned from one or few examples and
in a single pass over the training data instead of many iterations. HDC has achieved comparable to higher
accuracy compared to support vector machines (SVMs) (Rahimi et al., 2018; Imani et al., 2019b), gradient
boosting (Imani et al., 2019c), and convolutional neural networks (CNNs) (Mitrokhin et al., 2019), as well
as lower execution energy on embedded processors, compared to SVMs (Montagna et al., 2018), CNNs
and long short-term memory (Imani et al., 2019b).

Holographic Graph Representation: There are existing research works focused on high-dimensional
and holographic graph representation. Work in (Gayler and Levy, 2009) represented graphs in an HDC
model by binding together vertices to represent edges and adding the vectors together. However, they
specified only a single graph isomorphism problem that can be solved using their model, without specifying
how their model can be generalized to solve additional problems. On the other hand, our model provides

4

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

an end-to-end framework to perform various operations and problems that can be solved purely using HDC
operations. Moreover, we also provide a novel method to recover the bundled information that is stored in
the graph memory. This method uses the iterative noise canceling method, where the results at one iteration
are used to guess the noise in the next iteration. Additionally, we also discuss a memory refinement process
that can be used to expand the capacity of our hypervectors.

Work in (Ma et al., 2018) used holographic reduced representation to map nodes into high-dimensional
space. This mapping, which is based on HRR, aims to learn graph as latent space; thus, it does not explicitly
memorize the graph. The inference process is done using a 2-layered neural network. As a result, this
representation relies on a neural network and is primarily suited for learning. In contrast, in our method,
the learning, inference, and memorization tasks can be performed using native HDC operations. This
makes our architecture robust, efficient, and scalable and enables us to retrieve desired information more
transparently.

Work in (Nickel et al., 2016) introduced a method to find an embedding of a graph in a vector space. A
graph embedding is usually a learning process to find vector representations of graphs such that the vectors
representing two nodes are correlated based on the nodes’ similarity within the graph. This representation
is obtained using the gradient descent method, which is computationally costly. In addition, the vector
generated as graph representation has very low dimensionality, e.g., D = 150. In contrast, we define it
entirely differently as we do not find a graph embedding. Our solution chooses random hypervectors to
represent each node and uses them to build up graph memory. Our model is able to represent information
and perform cognitive and inference operations using orthogonality of random hypervectors. We only
perform the tasks and decoding using native HDC operations like bundling, binding, and similarity search.

2.1 Hyperdimensional Primitives
Let us assume H⃗1, H⃗2 are two randomly generated hypervectors (H⃗ ∈ {−1,+1}D) and δ(H⃗1, H⃗2) ≈ 0

(δ is similarity metric defined below).

Binding (*) of two hypervectors H⃗1 and H⃗2 is done by component-wise multiplication (XOR in binary)
and denoted as H⃗1 * H⃗2. The result of the operation is new hypervector that is dissimilar to its constituent
vectors i.e., δ(H⃗1 ∗ H⃗2, H⃗1) ≈ 0; thus binding is well suited for associating two hypervectors. Binding is
used for variable-value association and, more generally, for mapping.

Bundling (+) operation is done via component-wise addition of hypervectors, denoted as H⃗1 + H⃗2. The
bundling is a memorization function that keeps the information of input data into a bundled vector. The
bundled hypervectors preserves similarity to its component hypervectors, i.e., δ(H⃗1 + H⃗2, H⃗1) >> 0.
Hence, the majority function is well suited for representing sets. Note that the vector that we get after
bundling will have integer components, and will be an element of ZD in general. We do not clip the values
of the components back to ±1.

Permutation (ρ) operation, ρ(H⃗), shuffles components of H⃗ with a random permutation of the D
components of the hypervector, with ρp defined as ρ applied p times. The intriguing property of the
permutation is that it creates a near-orthogonal and reversible hypervector to H⃗, i.e., δ(ρp(H⃗), H⃗) ≃ 0
when p ̸= 0 and ρ−p(ρp(H⃗)) = H⃗. Thus, we can use it to represent sequences and orders.

Reasoning is done by measuring the similarity of hypervectors. We denote the similarity with
δ(H⃗1, H⃗2) = H⃗1 · H⃗2/D, where H⃗1 and H⃗2 are two hypervectors, and · denotes the dot product.

Frontiers 5

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Hyperdimensional
Encoding

✓Bunding
✓Binding
✓Permute

Graph Hypervector

✓Information Retrieval
✓Node Reconstruction
✓Graph Reconstitution

✓Graph Similarity Matching
✓Shortest Path Discovery
✓Object Detection

N1

N2

N3

N4N7

N6

N5

GrapHD Cognitive OperationsGrapHD Applications

a

bc

Figure 1. GrapHD Overview: (a) hyperdimensional graph encoding into a hypervector, (b) GrapHD
cognitive operations, and (c) GrapHD applications.

2.2 Motivation & Overview
As neuroscientists have already shown, the human brain memorizes events as a sparse memory

graph (Reijneveld et al., 2007; Tijms et al., 2013; George, 2008), where nodes are the objects/events, and
the edges represent the correlation between them. The brain does reasoning and analogy by referring to this
memory as prior knowledge. For example, as humans, when we see a set of events or objects repeatedly
occurring together, these objects get a higher correlation in our graph memory. By referring to this memory,
we can identify the correlated objects, make better decisions, and reason about them.

Although building up this graph is often easy, the main challenges are: (1) how to effectively represent
this graph to enable highly efficient and robust brain-like memorization, and (2) how to perform information
retrieval and reasoning on such representation. Unlike the existing graph processing algorithms that perform
costly exact computations, brain memorization and cognitive computation are highly approximate and
efficient.

In this paper, we propose GrapHD, a hyperdimensional graph memory that enables robust, efficient,
and holographic cognitive learning. Figure 1 shows an overview of GrapHD. GrapHD encodes various
graph data into high-dimensional space (Figure 1a). The encoding is based on a well-defined set of
mathematics introduced in Section 2.1. Our encoding represents a graph using a single hypervector, where
each dimension represents a neuron. GrapHD enables a wide range of cognitive operations directly over
the graph hypervector (Figure 1b). These cognitive operations extract information from the graph without
explicit access to original nodes. We exploit these functionalities to enable several applications, including
graph matching, shortest path, and object detection (Figure 1c).

3 HYPERDIMENSIONAL GRAPH REPRESENTATION
In this section, we explain how to represent graph structure in high-dimensional space. We exploit
hyperdimensional mathematics, introduced in Section 2.1, to spread the graph information across the fully
holistic high-dimensional representation. In this representation, no hypervector element is more responsible
for storing any piece of information than another. Here, we explain how GrapHD encodes both weighted
and unweighted graphs.

6

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

3.1 Unweighted, Undirected Graphs
Figure 2 shows the functionality of GrapHD encoding representing unweighted graphs. We first assign a

random hypervector H⃗i to each node in the graph (Figure 2a). Assuming a graph with V nodes and E edges,
we generate {H⃗1, H⃗2, · · · , H⃗V } as high-dimensional signature of nodes, where H⃗i is a D−dimensional
hypervector whose components are randomly chosen from the set {−1,+1}. Due to random generation,
the node hypervectors are nearly orthogonal: δ(H⃗k, H⃗l) ≃ 0 (k ̸= l), where δ denotes the similarity defined
in Section 2.1. This non-zero similarity is the noise in our model which can result in misprediction. The
role of noise in our model is further elaborated in Section 4.1.

We exploit the node hypervectors to create a memory for each node. The node memory needs to remember
all connections that a particular node has to its neighbors (Figure 2b). For example, we construct the node i
memory by accumulating all node hypervectors connected to it: M⃗i =

∑
j H⃗j , where j represents all the

neighbors of node i. Thanks to HDC mathematics, the bundling keeps the information of all connections.
For example, we can check if memory node i has connection to node k using: δ(M⃗i, H⃗k), where δ ≫ 0
and δ ≃ 0 show existence and non-existence, respectively. This is explained in Section 4.1 in detail.

After generating a memory for each node, we construct a single hypervector representing a graph. The
graph memory should memorize the information of nodes and their connections. To this end, for each node,
we associate the node and memory hypervectors, e.g., H⃗i ∗ M⃗i for node i. The bundling of all associated
hypervectors generates a graph memory (Figure 2c):

G⃗ =
1

2

(
H⃗1 ∗ M⃗1 + H⃗2 ∗ M⃗2 + · · ·+ H⃗V ∗ M⃗V

)
=

1

2

V∑
i=1

H⃗i ∗ M⃗i

where the graph memory is a compressed, invertible, and transparent model. Note that we have introduced
a factor of 1

2 because if we expand the node memory, then H⃗i ∗ H⃗j and H⃗j ∗ H⃗i will be counted twice.
Given the graph memory G⃗, we can reconstruct a local node memory using:

H⃗i ∗ G⃗ = M⃗i + noise ≈ M⃗i

where this approximate equality holds true because the HD vectors are randomly constructed; thus, they
are nearly orthogonal. Once we have the node memory, we can check if nodes j and i are connected by
calculating the similarity R = δ(H⃗j ,M⃗i), where R is termed as the decision score. If there exists an edge
between i and j, then R ∼ 1. Otherwise, R ∼ 0.

3.2 Unweighted, Directed Graphs
We use a similar encoding method as an undirected graph to build up each memory node. Since the graph

is directed, each memory only bundles the connections out of the node. These memory nodes need to be
combined to represent a graph. Unlike a undirected graph, the memory needs to preserve the sequence that
nodes are connected together. Therefore, we construct the graph memory as: G⃗ =

∑n
i H⃗i ∗ ρM⃗i, where ρ

is a permutation that permutes the node memory once, which is used to preserve the order of association.
The edge between i and j is not treated the same as the edge between j and i because the permutation
makes the binding a non-commutative operation. Therefore, compared to undirected graphs, there is no
factor 1

2 to construct the graph memory for directed graphs.

Frontiers 7

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

3

1
5

2

4

6

𝑴𝟏 = 𝐻2 + 𝐻3 + 𝐻4

(b) Memory Node

𝑴𝟐 = 𝐻1

𝑴𝟔 = 𝐻3 + 𝐻4

(a) Node Hypervector

3
1

2

4

1 2

4

6

3

𝑴𝟏

𝑴𝟐

𝑴𝟔

h1D h12 h11

h2D h22 h21

h6D h62 h61

𝑯𝟏

𝑯𝟐

𝑯𝟔

𝛿 𝐻𝑙 , 𝐻𝑘 ≈ 0 𝑙 ≠ 𝑘

(c) Graph Memory Generation

𝑯𝟏

m1D m12 m11

h1D h12 h11

m2D m22 m21

h2D h22 h21

m6D m62 m61

h6D h62 h61

𝑯𝟐

𝑯𝟔

∗

∗

∗

[+]gD g2 g1𝑮

Binding

Bundling
×1/2

Figure 2. Graph memory encoding in GrapHD: (a) node hypervector generation, (b) creating a node
memory, and (c) graph memory generation.

(c) Node Memory Generation(b) Weight Hypervectors

3
1

4 𝑽𝒂𝟐

𝑽𝒂𝟑

𝑯𝟐

v2D v22 v21

h1D h12 h11

h2D h22 h21

h6D h62 h61

𝑯𝟑

𝑯𝟒

∗

∗

∗

[+]mD m2 m1𝑴𝟏

Binding

Bundling

𝑎4

𝑎2

𝑎3

Select a*D
dimensions

Selected ×-1

-1 +1 +1 -1 +1-1

-1 +1 +1 -1 +1-1

-1 -1 +1 -1 -1+1

𝐷

Random Hypervector

h1D h12 h11

h2D h22 h21

𝑯𝟏

𝑯𝟐

h3D h32 h31𝑯𝟑

-1 +1+1 +1 -1-1 +1-1

v3D v32 v31

𝑽𝒂𝟒 v4D v42 v41

𝑽𝟏

𝑽𝟏

𝑽𝒂

(a) Hypervectors Generation

Figure 3. Node memory encoding in GrapHD for weighted graph: (a) node hypervector generation,
(b) creating weight hypervectors, and (c) node memory generation.

3.3 Weighted Graphs
In weighted graphs, the connection between nodes is represented using real values. To ensure holographic

representation, our encoding needs to first represent those weights into hypervectors. Figure 3 shows
GrapHD encoding for a node memory. Let us assume all weights in graph are normalized values [0, 1).
we exploit stochastic representation to construct the vectors V⃗a for a real number a ∈ [0, 1). We generate
V⃗1 as a random hypervector representing a value 1 and exploit that to generate weight hypervectors. For
example, we generate V⃗a by randomly choosing (1 − a) × D dimensions of V⃗1, and multiplying them

by −1. We define this evaluation of V⃗a as: f(V⃗a) = δ(V⃗a,V⃗1)+1
2 = a, where the final equality follows

from the definition of V⃗a. Although the randomness of weight hypervectors affects the robustness, the
randomness makes this method undesirable when we look at the iterative method of decoding the node
memory. The key problem is that slightly different values a will result in completely orthogonal vectors,
which will eventually take up a lot of capacity. To avoid the above drawbacks, we generate V⃗a by flipping
the components from (a×D)th to the Dth component of V⃗1. We note that we round a×D to the closest
integer (Figure 3b). The evaluation function remains the same and provides the same result as before. This
encoding is purely deterministic with respect to the weight value. Moreover, nearby values will generate
correlated orthogonal vectors. As a result, we do not lose the capacity here and can represent a large set of
weights.

8

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Using stochastic weight representation, we can construct the node memory using M⃗i =
∑

j V⃗wij ∗ H⃗j

(Figure 3c). In this manner, we can store the weights in a holographic way such that the values of the
weights do not bias the encoding. This is purely done using an end-to-end compatible HD framework.

3.4 Graph Memory Refinement
The brain is weak in one-pass memorization, as we often need multiple reviews of the same document to

memorize the details. HDC also may not memorize every detail of a graph by single-time encoding and
memorization (Gallistel and King, 2011; Ji et al., 2020). To ensure the information is well-memorized, HDC
should look at a graph iteratively and strengthen nodes’ information and connection. We name this process
as memory refinement. In HDC, the model memorizes connections between nodes by bundling together
hypervectors that represent different edges. However, these hypervectors are not perfectly orthogonal
with each other. As a result, during the decision process, when the model calculates the similarity of a
connection with the memory, the noise from the different connections can accumulate. This can lead to two
possibilities: (1) the similarity of an existing node goes below a decision threshold, and (2) the similarity
of a non-existing node goes above the threshold. These possibilities can result in misprediction of the
connection.

The problem is that given a node vector i, we need to recognize which other nodes have vertices to node
i. In other words, we need to check which memory nodes include the node i hypervector. This can be done
by calculating the similarity of all memory nodes with node i hypervector:

Rij = δ
(
M⃗j , H⃗i

)
where, Rij is called the decision score. As described in Section 4.1, if Rij is greater than T (called a
decision threshold), then we conclude that H⃗i exists in M⃗j . Our expectation is that all local memories
which include node i should get a higher similarity than a threshold (R > T). The refinement procedure is
done in multiple iterations. In each iteration, we chose a node i with node hypervector H⃗i. Then, we go
through the local memories of all the nodes j and perform the following update procedure

M⃗j → M⃗j + H⃗i If Rij < T but j and i share an edge

M⃗j → M⃗j − H⃗i If Rij > T but j and i do not share an edge

By this operation, we aim to strengthen the memory of the connections that are weakly memorized.
However, refinement may result in some other connections being mispredicted. To prevent this, we perform
memory refinement in an iterative manner until we converge into a final memory model. Note that the
refined memory is an integer component hypervector.

Refinement is a process that is used in almost all other HD problems too, and is more commonly called
Retraining. Almost all HD models require retraining to make them stronger in memory. Usually, retraining
is implemented in models that use association search, where we match a query with multiple classes (For
example, in classification tasks). Then, we subtract the query from the class with which it does not belong
(with a factor proportional to similarity) and we add the query to the class with which it belongs if the
similarity is not high enough. This results in a large separation between the similarity of the matching
classes and mismatching classes with a query, which is the aim.

Frontiers 9

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

However, GraphHD uses a thresholding-based method to check if an node or edge exists (Based on
Section 4.1 and 4.3 respectively) in the graph memory. For this, we need an alternative way of refinement
which is different from the retraining used in the traditional context. This is why in our model we subtract
or add the edge vector pairs to the graph memory based on whether the similarity is above or below the
threshold, as described in the previous paragraph. Our aim here is not to differentiate between the classes,
but to separate the signal distribution from the noise.

In Section 6.2, we show the impact of the memory refinement on increasing the hypervector capacity to
memorize larger graphs.

4 ALGORITHMS WITH GRAPHD REPRESENTATION
We perform several important cognitive functionalities over the memory graph to extract information or
reason based on that. We discuss a few key capabilities which have a wide range of applications in robotic,
genomics, signal processing, and machine learning. All tasks can be directly implemented over a single
graph memory hypervector without storing original nodes or their connection. In other words, we will
show how a single graph hypervector can answer several cognitive questions in a fast and efficient way.
In the following, we demonstrate the algorithms only for an undirected unweighted graphs. However, the
algorithms described can be extended to directed and weighted graphs without much difficulty. For directed
graphs, we would have an additional step of applying an inverse permutation when reconstructing the node
memory from graph memory, and using the permutation while checking existence of edge inside the graph
memory. For the weighted graphs, we need to recover the weight of the edge using the similarity search,
and then define a reasonable threshold for the similarity above which we can confidently conclude the
edge actually exists inside the graph (and that the measure similarity is not the noise). We generate graphs
randomly by first considering a fully connected graphs, and then deleting a random but uniformly chosen
set of edges.

4.1 Information Retrieval
The main objective of information retrieval is to extract information about the edges connected to a node

and the information associated with each node. We devise a statistical framework to study the errors and
data recovery. Given the graph memory G⃗, we can use this to reconstruct the node memory. Using the node
memory, we run inference to find the two main quantities – the nodes that share an edge with the current
node and the information that has been associated with the current node via binding.

First, we consider the task of identifying whether a node A is connected to node B given the node
memory M⃗A. The node memory can be written as M⃗A =

∑dA
i=1 H⃗i, where H⃗i is the hypervectors of all

the nodes connected to A and dA is the degree of the node A. If the hypervector of node B is given by H⃗B ,
then we calculate the decision score R given by:

R = δ(M⃗A, H⃗B) =

dA∑
i=1,i ̸=B

δ(H⃗i, H⃗B)︸ ︷︷ ︸
Noise

+ δ(H⃗B, H⃗B)︸ ︷︷ ︸
signal

(1)

This is for the case that the node B is connected to node A. If not, then the signal term would become part of
the noise term. The similarity between two random hypervectors can be written as δ(V⃗1, V⃗2) =

1
D (
∑D

i=1 ai)
where ai are random variables with values uniformly sampled from {−1,+1}. As a result by the central
limit theorem, 1

D (
∑D

i=1 ai) is a Gaussian distribution with mean 0 and standard deviation 1√
D

. Thus, by

10

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Decision Score

210-1
0

1

2

D
e

n
s

it
y

0 0.4 0.8 10.60.2

0

0.5

1

T
ru

e
 P

o
s
it

iv
e

 R
a

te

False Positive Rate

D=2k

D=4k

D=6k

D=1k

Noise

Signal

(a) (b)

T

T

False

Positive

Figure 4. Information Retrieval (a) Distribution of signal and noise during information retrieval, and (b)
ROC curves for different dimensionalities.

the central limit theorem again we get that

N∑
i=1

δ(V⃗i, V⃗) ∼ N(0,

√
N
D

)

Where V⃗ and V⃗i are randomly chosen vectors, and N is an integer. Thus in the case that A and B have
an edge connecting them, then the decision score R follows a Gaussian N(1,

√
(dA − 1)/D) distribution.

When there is no edge between A and B, then R follows a Gaussian N(0,
√

dA
D) distribution. Using this,

we can construct a theoretical Receiver operating characteristic (ROC) curve and then define a threshold
value T . If R > T , then we can conclude that nodes A and B have an edge between them, and if R < T
then we can conclude that there is no edge between A and B.

Figure 4a shows the similarity distribution of existing patterns (blue color, called signal) and non-existing
patterns (orange color, called noise) in the reference or memorized hypervector. Both signal and noise
follow Gaussian distribution, where the spread is an effect of interference noise as shown in Equation 1.
To identify the existence of a pattern, our goal is to put a threshold that can separate signal and noise
distribution. Figure 4b shows the ROC curve indicating the impact of threshold value on true and false-
positive rates. Ideally, we want the ROC curve to pass through the left-top corner, where true and false
positive rates are 100% and 0%, respectively. The sharp turning point would represent the optimal scenario.
However, the ROC would be less sharp if we decreased the dimensionality. For example, in D = 1k, signal
and noise will have wider distribution; thus, the perfect true positive rate can only be obtained with a very
high false-positive rate.
4.2 Node Memory Reconstruction

In this section, we discuss an iterative method to recover the node memory from the graph hypervector in
an error-correcting way. The main idea is to first formulate a reasonable estimation of all node memories
using the unbinding procedure. Then, we find a revised estimate for all the nodes by recursively canceling
out the interference noise. Figure 5 shows GrapHD functionality for node memory reconstruction. Suppose
we are given the graph memory hypervector G⃗. The first estimation of node memory i can be computed as,

Frontiers 11

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

h1D h12 h11

h2D h22 h21

hnD hn2 hn1

𝐻1

𝐻2

𝐻𝑛

∗
∗

∗

m1D m12 m11

m2D m22 m21

mnD mn2 mn1

Node Hypervector Node Memories

(estimated)

gD g2 g1Ԧ𝐺
Graph Memory

h2D h22 h21

hnD hn2 hn1

𝐻2

Node Hypervector

∗

∗

−
Interference

noise
[+]

𝐻𝑛

a

b

c

d

Reconstructed Node 1
Memory

Figure 5. Node memory reconstruction. (a) node hypervectors, (b) estimated node memory based on
node hypervectors, (c) cross-interference noise estimation, and (d) recursive noise cancellation in graph
memory

M⃗(1)
i (•a):

H⃗i ∗ G⃗ = M⃗i +
∑
j ̸=i

H⃗i ∗ H⃗j︸ ︷︷ ︸
≃0

∗M⃗j (2)

Here, we use the fact that H⃗i ∗ H⃗i ∗ M⃗i = M⃗i because H⃗i is a bipolar vector. This equation gives us
the first estimation of all node memories (•b), which is often noisy. The noise comes from the nearly
orthogonal distribution of node hypervectors. Through an iterative process, we can start reducing the
cross-interference noise (•c). In each iteration, we find an estimation of memory nodes, M⃗j (j ̸= i), and
deduct that noise from the next estimation. For example, we can recursively construct the following vectors
(•d):

M⃗(k+1)
i = H⃗i ∗

G⃗ −
∑
j ̸=i

H⃗j ∗ M⃗(k)
j

 (3)

= H⃗i ∗ G⃗ −
∑
j ̸=i

H⃗i ∗ H⃗j ∗ M⃗(k)
j (4)

The guess for the (k + 1)th step is constructed by first subtracting the guess from the kth step, which
minimizes the error. For example, M⃗2

i is the revised estimate that we get from M⃗1
i (the first estimation) to

cancel the noise. This process is repeated until we reach convergence. Section 6.4 explores the impact of
different parameters on the quality of node memory reconstruction.

Mathematical Capacity: The accuracy of error reconstruction models depends primarily on two
parameters: the number of edges of the graph, n, and the dimension of hypervectors, D. If there are
more edges in the graph, then the cross-terms can contribute a higher value of noise in the iterative
reconstruction step. A way to measure the noise can be done using the Signal Noise Ratio. Suppose that
each node has on average d = E/V edges connecting to it. Then the node memory of a specific node is the
sum of d different neighbor vertices of that node. Consider node A, with node memory M⃗A =

∑d
i=1 H⃗vi ,

12

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

∗
h1D h12 h11

h2D h22 h21

𝐻1

𝐻2

Node Hypervectors

gD g2 g1Ԧ𝐺
Graph Memory

a

e1D e12 e11

elD el2 el1

−

𝛿

𝛿 >T

[+]

>T

Noise

All Possible Edge

Hypervector

∗
hn-1D hn-12 hn-11

𝐻𝑛−1

hnD hn2 hn1𝐻𝑛
Check edge
existence

b

c

Figure 6. Graph memory reconstruction: (a) create all possible edge hypervectors, (b) checking the
existence of each edge on the graph, (c) iterative noise cancellation.

where vi are all the nodes containing an edge to A. To check whether the node B has an edge with A, we
calculate the similarity given by

R = δ(H⃗B,M⃗A) = δ(H⃗B, H⃗B)︸ ︷︷ ︸
Signal

+
∑
vi ̸=B

δ(H⃗B, H⃗vi)︸ ︷︷ ︸
Noise

The signal term is of magnitude 1, because every node vector is bipolar. Next, as we have demonstrated

in Section 4.1, the noise term follows a gaussian distribution N(0,
√

d−1
D). Thus, we can define the signal

to noise ratio to be

SNR = 10 log

(
1√

(d− 1)/D

)
≈ 5 log

D

d

As we can see, the increase of D decreases the noise, and we can decrease the noise by decreasing the
average number of edges per vertices. Note that we assume the dimension D and the number of edges E
are large to validate our approximation.

4.3 Graph Reconstruction
Here, we will discuss methods to reconstruct the whole graph given its memory hypervector G⃗. There

are two main paths one can take for this: (1) follow the methods in Section 4.2 and first reconstruct the
local node memory, and (2) use the methods of Section 4.1 to retrieve all the edges that are connected to
the node via the node memory. We observe that the first technique can come with a large error rate. This
is because the reconstruction of the node memory is not a binary classification process. Since we rely on
convergence, the converged value of the node memory might have various errors that can make the node
memory reconstruction vulnerable to error.

In this paper, we present an iterative process to reconstruct the graph directly from the graph memory. We
first define a function f(A,B) that checks the existence of an edge between nodes A and B. f(A,B) = 0
shows that there is no edge from node A to B, while f(A,B) = 1 indicates an edge. Figure 6 shows

Frontiers 13

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

GrapHD functionality for graph memory reconstruction. In the first step, we generate a hypervector for all
possible edges in the graph and initiate f (1) = 0 for all edges. Then, we consider the existence of each
edge (e.g., H⃗A ∗ H⃗B) in the graph memory, G⃗ (•a). As we explained in Section 4.1, this existence can
be computed by checking the similarity of the edge hypervector with graph memory (•b). If the returned
similarity value is larger than the threshold, we set f (1) = 1. This is the inference process as described in
4.1. We repeat this process for all the nodes of the graph, and we construct the first estimation of the graph,
G⃗(1).

Our goal is to enhance our estimation through an iterative noise cancellation method. Suppose there is an
edge between A and B in f (1)(A,B), thus the noise vector is given by N⃗ (1)

AB = G⃗(1) − H⃗A ∗ H⃗B . if there
is no edge, the noise vector is simply N⃗ (1)

AB = G⃗(1). In short, we can write this as (•c):

N⃗ (1)
AB = G⃗(1) − f (1)(A,B)(H⃗A ∗ H⃗B)

We construct the second estimation of the graph by initializing the function f (2)(A,B) = 0, and then
checking whether the edge between A and B exists in the noise-corrected memory M⃗− N⃗ (1)

AB . If the result
is positive, then we modify f (2)(A,B) = 1 and repeat the process for all pairs of nodes. This process is
repeated iteratively as follows. Suppose we’re given the kth estimate of the graph f (k). We initialize the
graph representation f (k+1) to 0. Then we use this to generate the graph memory G⃗(k) which corresponds
to the graph f (k)(A,B). We calculate the noise for A and B as follows:

N⃗ (k)
AB = G⃗(k) − f (k)(A,B)(H⃗A ∗ H⃗B)

We then check whether the edge from A to B exists inside the vector G⃗(k) − N⃗ (k)
AB . If the answer is yes, we

set f (k+1)(A,B) = 1 otherwise we set f (k+1)(A,B) = 0. We repeat the process until the convergence of
the function f .

Figure 7 shows a visual example of graph memory reconstruction during iterative noise cancellation. The
results are shown for a graph with 30 nodes and 150 edges. The blue lines show the correct edges on the
graph, while the red lines are edges in the actual graph but are not predicted by our graph reconstruction.
Note that our method does not predict extra edges that are not a part of the graph. Our result shows that
the initial graph reconstruction is approximate and cannot predict several existing edges. However, going
further through iterative noise cancellation, we can get a higher accuracy by predicting more edges correctly.
With 15 iterations, our technique can recover the entire graph accurately. Section 6.3 explores the impact of
different parameters on GrapHD graph reconstruction.

4.4 Graph Matching
In this section, we formulate an algorithm to match two graphs directly using the HD framework. The

aim here is to estimate the number of edges that occur in both graphs between the corresponding edges.
One specific assumption we make about our model is that each node serves a specific function or specific
memory. For example, in a cognitive model, we might have nodes that could represent items like cat,
dog, animal, and pencil. The cat, dog, and animals would have edges among each other that represent the
amount of correlation between them, while the pencil vertex would not be attached to any of them due
to a lack of correlation with the other three items. This assumption is required to define the problem of
graph matching appropriately. In cases where the node ordering does not matter, then matching two graphs
has an additional component of finding a mapping between the vertices of two graphs which maximizes a

14

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

1st Iteration 6th Iteration 13th Iteration 15th Iteration

Figure 7. Visual graph reconstruction: red are mismatched edges and blue are existing edges. #
Edges=150, # Nodes=30, and D = 3500.

similarity metric. However, by assuming the mapping of vertices to be fixed, our problem simplifies to
finding how much the edges match.

Suppose we are given the graph memory M⃗,M⃗′ of two directed unweighted graphs G and G′. Then,
using the method of Section 4.2, we can find the node memory M⃗a,M⃗′

a of node a of both the graphs G,
G′ respectively. Our aim is to now compare these two graphs. To proceed, we find the difference of the
node memory D⃗a = M⃗a − M⃗′

a of node a. Now, we note that all the nodes that are connected to node a in
both the graphs cancel out. Only the nodes that are connected to node a in exactly one of the graphs are
present in the difference vector D⃗. We can write

D⃗ =
N∑
i=1

(−1)niH⃗i

where ni = 0 if H⃗i is connected to node a in G but not in G′, ni = 1 if H⃗i is connected to the node
in G′ but not in G. Here, N is the number of differences in the neighbourhood of the node in both the
graphs. That is, the number of nodes connected to the current node in exactly one of the graphs. Now,
we use a statistical method to estimate the value of N . Each component of D⃗ is a sum of N random
variables which take up values 1 or −1. Thus each component of D⃗ goes as 2B−N , where B is a binomial
distribution with p = 0.5 and N terms. The standard deviation of a binomial distribution is given by
σB =

√
Npq =

√
N × 0.5× 0.5 =

√
N/2. We can then use the method of moments to estimate N .

Suppose Y = 2B −N . Then, we have ⟨Y ⟩ = 2⟨B⟩ −N = N −N = 0. As a result, ⟨Y 2⟩⟨= σY is the
standard deviation of Y . From the properties of standard deviation, σY = 2σB =

√
N . Thus, we can

estimate N as ⟨Y 2⟩. In Section 6.5, we show the capability of our proposed technique to enable efficient
and parallel brain-like graph matching.

5 NEUROMORPHIC HARDWARE ACCELERATION
GrapHD operations are highly parallel; thus, they can be accelerated on existing platforms. However,
operating over long binary vectors could still be costly or non-optimized for CPU and GPU platforms.
CPUs do not have enough resources for parallelism, and GPUs are more suitable for high-precision
computations such as floating-point values Halawani et al. (2021); Imani et al. (2021); Poduval et al.
(2021b). To accelerate GrapHD, we develop a novel platform that naturally operates over long binary
vectors. The capability of Non-Volatile Memories (NVMs) to act as both storage and a processing unit has
encouraged us to use Processing In-Memory (PIM) platform for GrapHD acceleration. Since 2016, there

Frontiers 15

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

have been several hardware accelerators for hyperdimensional computing based on processing in-memory
technology. For example, work in (Li et al., 2016; Imani et al., 2017c, 2020) developed a novel PIM
architecture accelerating associative search using content addressable memory. Work in (Imani et al.,
2019d) designed scalable PIM architecture to support encoding and scalable associative search. However,
unlike existing hyperdimensional learning models, GrapHD is not based on association search. GrapHD
performs computation using highly parallel (low-precision) arithmetic operation. This makes all existing
hyperdimensional accelerators unable to accelerate GrapHD. GrapHD operations are mainly bitwise or
low-precision vector-vector operations over long hypervectors. For example, binding is primarily based on
XNOR operation between two vectors stored in different memory columns.

5.1 NOR-based In-Memory Computing
In this paper, we develop DPIM that exploits the switching characteristic of memristor devices to

internally perform the bitwise computation on the selected memory element without reading them out of
array or using any sense amplifier. Figure 8a shows the structure of DPIM. DPIM exploits crossbar memory
with single-bit NVM device and implements NOR operation in a row-parallel way among the selected
memory columns (Imani et al., 2019a). In crossbar, each memristor device switches between two resistive
states, RON (low resistive state, ‘1’) and ROFF (high resistive state, ‘0’), whenever the voltage across the
device exceeds a threshold (Biolek et al., 2021). This property can be exploited to implement NOR gate
between the memory elements (Kvatinsky et al., 2014). Figure 8a also shows the NOR functionality on a
single row of a crossbar memory. To execute NOR in a row, an execution voltage, V0, is applied at the p
terminals of the inputs devices while the p terminal of the output memristor is grounded. If one or more
input memristors are in a low resistance state (storing “1” value), the voltage across the output device will
be V0, resulting in switching the output device to the high resistance stage (“0” value). However, if all
input devices are in the high resistance stage, the voltage across the output device cannot switch the output
device; thus, the output device keeps “1” value.

Since NOR is a universal logic gate, it can be used to implement other logic operations like addition
and multiplication (Imani et al., 2019a; Haj-Ali et al., 2018). DPIM arithmetic operations are, in general,
slower than the corresponding CMOS-based implementations. This is because memristor devices are slow
in switching. However, this PIM architecture can provide significant speedup with massive parallelism.
PIM can support addition and multiplications in parallel, irrespective of the number of rows. For example,
to add values stored in different columns of memory, PIM takes the same amount of time to process the
addition in a single row or all memory rows. Depending on the size of the operation, the computation takes
a different time to execute. Let us assume the computation of k vertical vectors of N -bits with a length of l.
When k ≤ R/N −Mop, the execution time of addition and multiplication can be modeled as:

Top = (k − 1)× ⌈l/R⌉︸ ︷︷ ︸
Crossbar Reuse

×Top + w × TD
write

where Top is the time of either fixed-point or floating-point arithmetic operations, R is the number of array
rows, and 0 ≤ w ≤ N × k is the number of write operations.

5.2 DPIM Operations
In DPIM, at each time step, the main computation is a bitwise NOR operation between two columns of

memory, storing two vectors. DPIM supports row-parallel computation, meaning that regardless of the
number of rows, it takes the same amount of time to perform addition/multiplication. Figure 8b shows the

16

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning
R

o
w

 D
ri

ve
r

Sense Amp

in1 in2 inn

out

V0

≥V0/2
No Switched

RON: ROFF:

GND

in1 in2 inn

out

V0

≥V0/2

Switched GND

in2 out

V0 V0 0

2

1

R
o

w
 D

ri
ve

r

Sense Amp

in1 in2 inn

out

V0

≥V0/2
No Switched

RON: ROFF:

GND

in1 in2 inn

out

V0

≥V0/2

Switched GND

in2 out

V0 V0 0

2

1

(b) Column-serial arithmetic(a) NOR-based In-Memory Computing

(A×B)
T

Matrix

A
B

Matrix
A×B

Matrix

× × × × × × × ×

++ ++++++

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

R
o

w

D
ri

ve
r

Se
n

se

A
m

p

(c) Row-parallel dot product

Multiplication Block

Accumulation Block

Output

A B

A
++

B
A

+
B

A
+

B

A
×

×

 B
A

×
 B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

× ×
Row-Parallel
Multiplication

Row-Parallel
Addition

A B

A
+

B

A
×

 B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

×
Row-Parallel
Multiplication

Row-Parallel
Addition

A B C

A
×

+×

+

B
A

×

+
B

×

+×

+
C

×

+
C

A
×

+

B
×

+

C

A
×

+×

+

B
A

×

+
B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

× +× + × +× +

Inputs Output

A B C

A
×

+

B
×

+

C

A
×

+

B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

× + × +

Inputs Output

R
o

w
 D

ri
ve

r

Sense Amp

in1 in2 inn

out

V0

≥V0/2
No Switched

RON: ROFF:

GND

in1 in2 inn

out

V0

≥V0/2

Switched GND

in2 out

V0 V0 0

2

1

(b) Column-serial arithmetic(a) NOR-based In-Memory Computing

(A×B)
T

Matrix

A
B

Matrix
A×B

Matrix

× × × ×

+ +++

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

R
o

w

D
ri

ve
r

Se
n

se

A
m

p

(c) Row-parallel dot product

Multiplication Block

Accumulation Block

Output

A B

A
+

B

A
×

 B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

×
Row-Parallel
Multiplication

Row-Parallel
Addition

A B C

A
×

+

B
×

+

C

A
×

+

B

Se
n

se

A
m

p

R
o

w

D
ri

ve
r

× + × +

Inputs Output

Figure 8. (a) NOR-based in-memory computing using switching characteristic of NVM devices. (b)
row-parallel arithmetic operations, including addition and multiplication, (c) row-parallel dot product
operation.

functionality of DPIM performing row-parallel arithmetic operations. For any selected columns, DPIM
computes a series of the NOR-based operations to implement bundling and binding. To perform computation
among more than two vectors, the arithmetic operations are performing serially. For an example shown in
Figure 8b, to perform arithmetic over three vectors, DPIM computes arithmetic between (A±B), then the
result is aggregated with the third vector (A±B ± C).

DPIM only supports column-wise computation; thus, it cannot perform vector-matrix multiplication
entirely in a single memory block. To address this, work in (Imani et al., 2019a) proposed the idea of
transposed vector-matrix multiplication that enables both multiplication and accumulation to happen using
column-wise operations. This approach stores multiple copies of a transposed input vector (horizontal
vector) in different memory rows. However, this method is slow and requires a large amount of reserved
memory; thus, eliminating high-precision computation in a DPIM block.

To enable DPIM to perform accumulation in a row-parallel way, we propose a novel technique that
enables multiplication and accumulation to be performed in two different blocks (Figure 8c). DPIM
performs column-wise multiplication between the input vector and the matrix stored in memory. This
multiplication is performed on the original data without transposing the input vector or matrix. To enable
column-wise accumulation, our method writes the transposed multiplication results on the second block. To
minimize the cost of data movement, we exploit the sense amplifier to perform row-parallel/bit-serial read
operation of multiplication results and write them in the pipeline on the next memory block (accumulation
block). This enables fast and efficient data transfer. Finally, we compute the vector-matrix multiplication
by column-wise addition of the vectors in (A×B)T matrix. In Section 6.8, we evaluate DPIM capability
in accelerating different GrapHD applications.

6 APPLICATIONS EVALUATION

6.1 Experimental Setup
GrapHD has been implemented in both software and hardware co-module. In software, we verified

GrapHD functionality by implementing it using Python on CPU. To ease the deployment on parallel
platforms, we integrate GrapHD with PyTorch library. We optimized the PyTorch library to more effectively
work with hypervectors as a common GrapHD data structure. We evaluated the framework on NVIDIA

Frontiers 17

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

D
e

n
si

ty

-1 0 1 2
0

1

2

-1 0 1 2 -1 0 1 2
Decision Score Decision Score Decision Score

No Refinement 3 Iterations 20 Iterations

Large Low ZeroNosie
Signal

Figure 9. Distribution of existing and non-existing nodes in graph memory without and with an iterative
graph memory refinement, shown for 100000 edges.

Jetson TX2, which has a CUDA-enabled GPGPU running with low-power profiles. We measure the latency
of the learning procedure and the power consumption using the NVIDIA tegrastats utility.

We evaluate GrapHD functionality on multiple cognitive and learning tasks: (1) Graph memory and node
memory reconstruction, (2) graph matching that checks the similarity of graph memories, (3) shortest path
between nodes to reason about the relation and closeness of two memorized objects in the graph memory.
(4) context-aware learning in object detection, where GrapHD is used as external memory to keep the
relation between the objects occurring in different video frames.

For circuit-level simulation, we use HSPICE to measure the energy consumption and performance of
DPIM in 28nm technology. The robustness of all proposed circuits, i.e., interconnect, has been verified
by considering 10% process variations on the size and threshold voltage of transistors using 5000 Monte
Carlo simulations. DPIM works with any bipolar resistive technology, which is the most commonly used in
existing NVMs. Here, we adopt a memristor device with a VTEAM model (Biolek et al., 2021; Kvatinsky
et al., 2015). The memristor’s model parameters are chosen to produce a switching delay of 1.1ns, a voltage
pulse of 1V and 2V for RESET and SET operations to fit practical devices (Kvatinsky et al., 2014).

6.2 Graph Memory Refinement
Figure 9 shows the similarity distribution of existing and non-existing patterns into graph hypervectors.

The results are obtained for the initial (left) and the adjusted graph memory. As explained in Section 3.4,
for perfect prediction and information retrieval, we would like to have no overlap between noise and
signal distribution such that a threshold value can separate distributions. GrapHD memory refinement
aims to iteratively increase the hypervector capacity and reduce the overlap between the signal and noise
distribution. This would enable us to store large graphs in smaller dimensions. Graph refinement increases
the similarity (decision score) of the existing patterns by recursively checking if the graph memory correctly
memorizes them. For each misprediction (decision score lower than threshold T for existing patterns), we
adjust the graph hypervector. As Figure 9 shows, the iterative graph refinement reduces the overlap between
the noise and signal distribution until having zero overlaps in 20 iterations. This technique increases the
capacity of a hypervector with fixed dimensionality to store a larger graph. In other words, this technique
makes the ROC curve (Figure 4b) sharper, resulting in 100% true positive with 0% false-positive rates.

6.3 Graph Reconstruction
Figure 10a shows the impact of hypervector dimensionality and the number of edges on the quality of

information retrieval. Our results indicate a larger graph requires higher hypervector dimensionality to

18

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

100 200 300

1k

2k

6k

10k

of Edges

D
im

e
n

s
io

n
s
 (

D
)

4k

8k

(b) Average # of Iterations

100 200 300

1k

2k

6k

10k

of Edges
D

im
e
n

s
io

n
s
 (

D
)

4k

8k

0%

100%

60%

20%

40%

80%

7

1

3

5

(a) Reconstruction Accuracy

Iterations

#
 M

is
m

a
tc

h
e
d

 E
d

g
e
s

2 5

0

40

80

120

(c) Error vs. Iterations

#
 M

is
m

a
tc

h
e
d

 E
d

g
e
s

0

40

80

120

Noise in Dimensions (%)
0 10 20 30

(d) Robustness to Noise

6 8

D=2k
D=4k
D=6k

D=1k

1 3 4 5

100 Edges
150 Edges50 Edges
200 Edges

Figure 10. Graph reconstruction: (a) reconstruction accuracy, (b) required iterations vs. graph size and
dimensions, (c) error rate v. iterations, (d) robustness to noise (Shown over 1000 trials)

ensure full graph memorization. For example, a graph with 100 and 200 edges can be accurately stored in a
graph hypervector with D = 4k and D = 6k dimensionality, respectively. Figure 10b shows the number of
required iterations for data recovery. Our technique requires fewer iterations of noise cancellation when the
dimensionality of a hypervector is larger than the number of edges that it can accurately store. On the other
hand, when the dimensionality is much lower than the required value, our algorithm may still require a
few iterations, but it would converge to a random solution. In summary, maximum iterations are required
when the dimensionality is the lowest possible value that provides enough capacity to accurately recover
the stored information.

Figure 10c also shows the number of mismatched edges during different noise cancellation iterations.
Initially, our graph reconstruction comes with a large number of mismatched edges. This mismatch is larger
for larger graph sizes. The error rate starts decreasing during our recursive error correction mechanism.
When the size of the graph is within a capacity of a hypervector (V ≤ 150 for D = 4k, as shown in
Figure 10a), our reconstruction will accurately recover the model. However, when the hypervector stores
more patterns, our data recovery often diverges to a random graph (red line shown in Figure 10c). By
increasing the number of vertices (and fixing the number of edges to 100), we find that the capacity is
unchanged by the number of vertices for high dimensions. This could be because when we have a large
enough number of vertices, then most of them will not be connected to any other vertices (due to a fixed
number of edges). As a result, they will have 0 node memory and will contribute nothing to the graph
memory, thus preserving capacity. The primary bottleneck is in generating orthogonal hypervectors that
represent the nodes, so that in the decoding steps we do not make any false decisions. This is why at low
dimensions we get a higher error, because the generated hypervectors for the nodes are not completely
orthogonal to each other.

One of the main advantages of hyperdimensional representation is its high robustness to noise and
failure. In GrapHD, hypervectors are random and holographic with i.i.d. components. Each hypervector
stores the information across all its components so that no component is more responsible for storing
any piece of information than another. This makes a hypervector robust against errors in its components.
Figure 10d shows the impact of noise in dimensions on graph memory reconstruction. The results are
reported when different percentages of hypervector dimensions are randomly dropped. Our representation
provides inherent robustness to such noise, as the data can still be reconstructed when the dimensionality is
large enough. For example, our method tolerates 10% random noise using D = 6k dimensions to represent
a graph with 30 nodes and 150 edges.

6.4 Node Memory Reconstruction
Figure 11a shows the impact of graph size and hypervector dimension on node memory reconstruction

error. Similar to graph reconstruction, the node reconstruction error depends on the graph size and

Frontiers 19

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Iterations

E
rr

o
r

2 4

(c) Error vs. Iterations

0

1

2

3

Error in Dimensions (%)

(d) Robustness to Noise

100 200 300

1k

2k

6k

of Edges

D
im

e
n

s
io

n
s

 (
D

)

4k

8k

(b) Average # of Iterations

100 200 300

1k

2k

6k

10k

of Edges

D
im

e
n

s
io

n
s

 (
D

)

4k

8k

0

4

7

1

3

5

Over-Capacity

8

6

2

(a) Node Reconstruction Error

10k
Higher

Initial Error

6

Higher
Final Error

100 Edges
150 Edges

200 Edges

50 Edges

250 Edges

E
rr

o
r

0

5

1

2

3

4

40 12 16

D=2k
D=4k
D=6k

D=1k

81 3 5

Figure 11. Node memory reconstruction: (a) error rate, (b) required iterations vs. graph size and
dimensions, (c) error rate vs. iterations, (d) robustness to noise.

dimensionality. A larger graph with more edges requires a higher dimensionality to ensure accurate node
memory reconstruction. For example, for graphs with 100 and 200 nodes, our technique requires D = 2k
and D = 4k to ensure 100% accurate node reconstruction. Note that using a hypervector with lower
dimensionality to store a large graph could result in a quality loss during the information extraction. For
example, using D = 2k to store a graph with 200 nodes reduces the chance of node memory reconstruction.
Note that HDC is an approximate computational model. Therefore, it cannot theoretically ensure 100% data
reconstruction. However, as our results show, in practice it is highly possible to get completely accurate
reconstruction rate when your node memory is not loaded with more than its theoretical capacity.

Figure 11b also shows how the number of required iterations changes depending on the graph size and
hypervector dimensionality. As expected, node reconstruction is faster when hypervector dimensionality is
larger (in fixed graph size). The lower number of iterations comes from a low error rate and interference
noises. Figure 11c shows the node memory reconstruction error for a hypervector with D = 4k dimensions
that stores different graph sizes. The larger graph, the more iterations we need to cancel the noise. In
addition, the noise is less likely to cancel out to decrease the error rate (as also shown in Figure 11a
heatmap).

Similar to graph reconstruction, node reconstruction is inherently robust to noise and failure on random
hypervector elements. Our evaluation shows higher robustness in hypervectors with higher dimensionality.
For example, hypervectors with D = 6k can tolerate a 5% error rate with no error. Even dropping more
dimensions still has a small impact on the reconstruction error.

6.5 Graph Matching
Figure 12 evaluates the quality of GrapHD for graph matching using hypervectors with different

dimensions. For all evaluations, the graph size is assumed to be fixed (30 nodes and 150 edges). The x-axis
in the graph shows the actual edge difference between the two graphs, while the y-axis shows our estimated
node difference. Ideally, we expect to see a graph with a straight line (y = x), indicating that our estimation
accurately matches the actual edge difference. However, graph matching comes with an error when the
hypervector dimensionality is low. As our evaluation indicates, the estimated edge difference gets a higher
error (becomes far from the diagonal line) when the dimensionality gets lower.

6.6 Shortest Path Between Nodes
In a graphical model of memory, identifying the context of information and making inferences often

require identifying correlated nodes separated by certain distances in graphs. These are nodes that are not
directly related; rather, they are related by a series of nodes that connect only to the next node. This is similar
to how a reasoning process occurs; we start off with an observation connected to another memory. This

20

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning
E

s
ti

m
a

te
d

 E
d

g
e

 D
if

fe
re

n
c

e

Actual Edge Difference

0 20 40 60 80 100

0

20

40

60

80

100 D=100
D=500

D=50

D=5000

D=10000

Higher

Error

Higher

ErrorAccurate

Prediction

(Dotted line) 1k

1.5k

2k

2.5k

3k

10 20 30 40 50
Depth of Node

D
im

e
n

si
o

n
s

Su
cc

e
ss

 R
at

e

0%

20%

40%

60%

80%

100%

ba
Figure 12. (a) Graph matching vs. dimensions: actual vs. estimated edge difference (For a single model)
and (b) GrapHD success rate performing shortest path on an encoded graph (shown over 1000 trials).

memory would, in turn, lead to a connection with another memory through reasoning. This is equivalent to
finding the path between two nodes and studying its connections in the graph.

We can use GrapHD algorithms to find a path between two nodes and find the shortest distance between
them. Suppose we want to find the shortest path between two nodes A and B in a graph G⃗. First, we
reconstruct all the local node memory for all nodes in the graph. Next, we maintain a distance value
associated with all nodes, and this value is initialized to 0. This value will later be substituted with the step
at which the node is encountered in the graph algorithm, which is also the distance of the node from A.

Here we explain our algorithm. In the first step, we consider the node A with node memory H⃗A. Next,
using the thresholding method from section 4.1, we find all the nodes that have an edge with A. These
nodes are distance 1 away from A, and we assign a distance value of 1 to these nodes. Next, we consider
the node memory of all the distance d = 1 nodes and add them together. Then we repeat the same process
to find all nodes not encountered before that share an edge with the distance of d = 1 nodes. These nodes
are a distance of d = 2 away. Suppose we have the set of all distance d = n nodes; we add up all their local
memories. Then, we find the set of all nodes not encountered before, which share an edge of one of the
distance d = n nodes. These nodes will be labeled with distance d = n+ 1. The process is repeated until
either the node B is encountered, until all the nodes are encountered, or no new nodes are encountered.

If the node B is never encountered when the process terminates, we conclude no path between the nodes
A and B. If B is encountered, we begin finding out the exact path joining A and B. Suppose node B is
at a distance d away from A. We consider the node memory of B and then find which one of the d − 1
distance nodes shares an edge with the node B. If there are multiple, we choose one of them randomly.
Next, we consider the node memory of this d− 1 distance node. We find which of the d− 2 distance nodes
share an edge with the d− 1 distance node. If there are multiple, then we again chose one of the nodes
arbitrarily. We continue this process recursively. After reaching the d− k distance node, we consider its
node memory and find a d− k − 1 distance node that shares an edge with the distance d− k node. The
process is continued until we reach the node A. Following the nodes back will allow us to find the shortest
path that joins the nodes A and B.

In the evaluations, we simulate d disjoint random graphs, each with Vav = 21 vertices and Eav = 270
edges. In all these graphs, we chose one random node and labeled it as 1, 2, 3, 4, · · · , d. Next, we form
an edge between all nodes. In this way, we construct a random graph that contains pairs of nodes with
distances 1 to d in a controlled manner. In our evaluations, we chose d = 50 and the results are shown in
Figure 12b. We see that as we increase the distance between the destination node and the starting node, the

Frontiers 21

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

0

10

20

30

40

0%

20%

40%

60%

80%

Accuracy

0

200

400

600

Training Time (s) Inference Time (ms)

0

10

20

30

40

50

S
p

e
e
d

u
p

 (
G

P
U

=
1
)

0

20

40

60

80

100

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Im
p

ro
v
.
(G

P
U

=
1
)

D=1K D=4K D=8K D=16K D=32K

(a) Object Detection (b) GrapHD Acceleration

Figure 13. (a) GrapHD vs. RNN for object detection: Accuracy and efficiency. (b) DPIM speedup and
energy efficiency running different GrapHD operations over GPU.

accuracy decreases drastically. This is because the number of edges that GrapHD searches through in each
iteration increases exponentially with each step. As a result, the capacity eventually saturates if the graph
is too big and if the distance is too large. On the other hand, increasing the dimension also increases the
accuracy. This is expected since larger dimensions would increase the capacity of GrapHD, which allows
storing a larger number of neighbors efficiently.

The shortest path detection has a natural interpretation in the case of weighted graph. In the weighted
graph representation, the weights on edges become proportional to the similarity of the edge with memory.
This results in a stochastic path finding algorithm, where the probability an edge is identified as being
connected to the current node is proportional to the weight on edge. This has interpretation in the cognitive
framework that the edge weight can be thought of as how strongly two nodes are correlated in the memory
or how strongly the connection is memorized. The Human brain would form reasoning-based connections
between two such objects depending on whether the two items in memory are strongly correlated. We can
mimic a probabilistic path finding algorithm by using the current algorithm for the weighted graphs, which
can mimic the reasoning process of the human brain. However, if we want to find a path independent of
the weights, then we would need to store the graph using the unweighted encoding, and then the same
algorithm would work as expected.

6.7 Object Detection
Based on the mathematical discussion in the paper (Section 4.1), we already showed the advantages

that GrapHD for information retrieval, which is a key operation involved in traditional knowledge graph
and relational learning benchmarks. Instead, in this work, we focus on a more advanced task that exploits
knowledge graphs as a memorization model to enhance existing machine learning models. Our task also
involves operations and computations that are not in high-dimension. Particularly, we evaluate GrapHD
capability to help existing object detection algorithms. Deep learning models have already been used for
highly accurate object detection (Ren et al., 2015). Particularly, convolutions neural networks (CNNs)
showed promising results in extracting information from image and video data. However, CNN has a weak
notion of time; thus, their predictions might be non-sense or out of context, e.g., predicting a moon as a
light in videos taken from the sky.

GrapHD is a memorization model that can be used beside any learning algorithm. To eliminate these
miss-predictions, CNNs need to keep the context by associating the objects during the training and inference
phase. We exploit GrapHD to memorize the relation of objects as a memory graph. GrapHD assigns strong
weights between objects that are more likely to happen together in a video frame. For every prediction,

22

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

CNN predicts all objects that have been seen in a frame. Next, GrapHD encodes the objects into high-
dimensional space and checks the graph memory to see a possible correlation of these items (i.e., the
distance or existence of edges in a graph memory). This enables CNNs to provide more accurate decisions
and also the capability to reason about the prediction based on prior knowledge. To get the maximum
benefit from GrapHD, the learning and memorization models need to be integrated. In other words, both
CNN and GrapHD models need to be updated using the same procedure and rules. In our study, the GrapHD
is placed as a dynamic memory beside the CNN. For each given train data, the data is processed using
both CNN and GrapHD. At first, CNN operates over the data to make a prediction. Next, GrapHD look at
the CNN prediction and accordingly gives a new loss term to the CNN in order to get updated. This loss
represents how far the CNN prediction was compared to a GrapHD memorization prediction.

Figure 13a shows the accuracy and efficiency of CNN enhanced with GrapHD and recurrent neural
networks (RNNs) for object detection task (Karpathy and Fei-Fei, 2015). The results are reported over the
Microsoft COCO object detection dataset (Lin et al., 2014). Work in (Kousik et al., 2021; Karpathy and
Fei-Fei, 2015) integrated CNN and RNN in series, thus providing memorization capability for CNN in
making a prediction. The results are reported for networks running on NVIDIA Jetson TX2, an embedded
processor. Our evaluation shows that CNN enhanced with GrapHD can provide the same accuracy as the
RNN network. However, our method can provide significantly higher computation efficiency. Our solution
enables parallel construction of CNN and GrapHD model, thus enabling parallel training. Our evaluation
shows that GrapHD achieves 3.8× faster training and 1.7× faster inference than RNN while ensuring the
same classification accuracy. Note that GrapHD provides a higher capability for reasoning, as it has direct
access to the transparent memorized values.

6.8 Hardware Acceleration
As we explained in Section 5, GrapHD applications can be accelerated on parallel platforms. Here, we

study the capability of the proposed DPIM architecture in accelerating GrapHD applications. Figure 13b
shows the performance and energy efficiency of DPIM running different GrapHD applications. The results
are reported for a large graph with 1000 nodes that have been mapped to a hypervector with different
dimensions. All results are reported respective to NVIDIA GTX 1080 GPU when GPU runs multiple
queries to ensure maximum resource utilization. Our results indicate that DPIM provides higher speedup
and energy efficiency as compared to GPU regardless of the dimensionality and GrapHD operation. For
example, DPIM achieves 10.6× faster and 42.0× higher energy efficiency than GPU with D = 1K
dimensions. DPIM efficiency depends on two factors: (1) Application: operations required by GrapHD
applications. DPIM provides higher benefits for applications that require lower precision arithmetic. This
is due to a linear and quadratic increase in DPIM bundling and binding time in respect to bit-precision.
For example, GrapHD during graph and node reconstruction operates over low precision hypervectors,
thus providing higher computation efficiency over GPU. (2) Dimensionality: DPIM efficiency increases
with the hypervector dimensionality. This efficiency comes from DPIM capability to support fast and
row-parallel operations and also address data movement issues by eliminating costly data access to off-chip
memory. Our results indicate that DPIM provides significantly higher performance speedup for graphs
with higher dimensionality. For example, GrapHD using D = 16K and D = 32K dimensions provide
on average 23.1× and 30.4× faster computation compared to GPU. In terms of energy efficiency, DPIM
efficiency has a lower relation to dimensionality as both DPIM and GPU will require the same number of
operations. The slight improvement in DPIM energy efficiency comes from its capability in data movement
reduction.

Frontiers 23

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

6.9 Graph Decoding With Nengo
In this section, we demonstrate GrapHD memory decoding using the Nengo SPA module to simulate

how our model can work with Neuromorphic hardware and support existing models that try to make
more brain-like models of cognition and reasoning. A key example where our model can be applied is
SPAUN Stewart et al. (2012), which is a large-scale cognitive model of the brain. SPAUN consists of
about 2.3 million spiking neurons which are used to run various tasks like addition, digit recognition, and
question answering without requiring any rewiring of the neurons. SPAUN represents information using
Holographic Reduced Representation (HRR) DuBois and Phillips (2017), where the hypervectors are unit
real vectors, and the binding is done using circular convolution. Our model for storing graph memory can
be used to better represent associated information and correlated memory events in graph-based format and
also decoded using the algorithms in this paper.

The implementation of GrapHD uses the HRR encoding that comes with the Nengo SPA module. The
module implements HRR operations like binding, bundling and similarity using a Spiking Neural Network
architecture. Our implementation contains an encoding module and decoding module. First, we generate
random D = 64 dimensional vectors for each of the nodes. The encoding module then constructs the Graph
memory of the graph based on the algorithm in Section 3. This is done using the binding and bundling
operations implemented in Nengo SPA. The decoding module requires additional steps of first unbinding
the memory vector with all possible node vectors, and then checking the similarity of the result with all
other nodes. Based on the thresholding process, it is then decided whether an edge between two nodes
exist. Calculating the similarity with all the nodes is done automatically by Nengo where it checks the
similarity between all the semantic pointers in the vocabulary of the model. The main step is in unbinding
the memory vector with all the nodes, which is done by calculating the unbinding of a query vector and
memory vector. The query vector is chosen to cycle through all the node vector over a period of 0.5s, and
then Nengo calculated the similarity of the result with all the node vectors as a function of time.

As Figure 14a shows, we use a graph with six vertices and ten edges and demonstrate at each step how the
neuromorphic model of GrapHD decodes the graph. We decode the memory at each iteration by sending a
query signal for a total of 0.5 second which sequentially changes value from the SPA representing V⃗0 to V⃗5.
From the output similarity at each of these time frames with the rest of the vertices, we can understand
whether a connection between two nodes exists. For example, consider Figure 14c, which is the first
iteration of the decoding process. To find whether an edge between node 2 and node 3, we look at the time
of 0.21 second, when the query has the vector representing node 2 and then find the similarity of the line
representing node 3 (Red). This similarity is about 0.3, which is greater than the threshold value (chosen to
be 0.1).

In Figure 14, we show the results of the Graph decoding process. The figures show the similarity of the
semantic pointer with each of the vectors representing all the nodes. In Figure 14b, we show the similarity
of the query vector with each of the nodes as a function of time. It keeps cycling between all the nodes once
within one cycle of 0.5 second. In Figure 14c, we show the Graph memory of the model and its similarity
with each of the node vectors when we feed in the query vector to calculate the similarity. In Figure 14d-e,
we show the output of the graph decoding process in the first and second iterations. We find that the output
graph in the first iteration has an edge missing, but then it finds this edge and accurately decodes the graph
in the second iteration.

Besides SPAUN, as vector symbolic architecture, GrapHD has full compatibility with the new Intel
neuromorphic framework, i.e., LAVA. This further shows the capability of GrapHD to be used as
neuromorphic computing framework.

24

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Si
m

ila
ri

ty

0

0.4

0.8

0 0.1 0.2 0.3 0.4 0.5
Time (s)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

V0 V1
V2 V3 V4 V5

(b) (c)

(d) (e)

0

4

5
3

2

1

0

4

5
3

2

1

Si
m

ila
ri

ty

-0.4

0

0.4

(a)

Example Graph

Initial Reconstruction

Si
m

ila
ri

ty

-0.2

0

0.4

0.2

0.6

Si
m

ila
ri

ty

-0.2

0

0.4

0.2

0.6

Figure 14. Results of the Graph decoding process on neuromorphic hardware. (a) graph structure and the
initial reconstructed graph, (b) similarity of the query vector with each of the nodes, (c) similarity with
each of the node vector with Graph memory of the model, (d-e) output of the graph decoding process in
the first (d) and second iterations (e).

7 CONCLUSION
This paper defines a brain-inspired system, called GrapHD, that better represents HDC memorization
capability in terms of a graph of relations. We introduce, GrapHD, graph-based hyperdimensional
memorization that represents information into high-dimensional space and enables reasoning. GrapHD
defines an encoding method that represents complex graph-based data structure into high-dimensional
space. Our encoder spreads the information of all nodes and edges across into a full holistic representation
so that no component is more responsible for storing any piece of information than another. Then, GrapHD
defines several important cognitive functionalities over the encoded memory graph. These operations
include memory reconstruction, information retrieval, graph matching, and shortest path.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS
PP and MI conceived the research. PP, AZ, FI, HA, TG, and MI conducted the research and analyzed the
data. PPP, FI, HA, TG, and MI wrote the paper. All authors reviewed the manuscript and agreed on the
contents of the paper.

Frontiers 25

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

DATA AVAILABILITY STATEMENT
The dataset Microsoft COCO object detection for this study can be found in (Lin et al., 2014). The raw data
supporting the conclusion of this article will be made available by the authors, without undue reservation.

REFERENCES

Bassett, D. S. and Sporns, O. (2017). Network neuroscience. Nature neuroscience 20, 353–364
Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., et al. (2014). Nengo:

a python tool for building large-scale functional brain models. Frontiers in neuroinformatics 7, 48
Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., and Andreopoulos, Y. (2019). Graph-based object

classification for neuromorphic vision sensing. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 491–501

Biolek, D., Kolka, Z., Biolková, V., Biolek, Z., and Kvatinsky, S. (2021). (v) team for spice simulation of
memristive devices with improved numerical performance. IEEE Access 9, 30242–30255

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the internet of
things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing. 13–16

Chai, W. J., Abd Hamid, A. I., and Abdullah, J. M. (2018). Working memory from the psychological and
neurosciences perspectives: a review. Frontiers in psychology 9, 401

Chen, R., Imani, M., and Imani, F. (2021). Joint active search and neuromorphic computing for efficient
data exploitation and monitoring in additive manufacturing. Journal of Manufacturing Processes 71,
743–752

Chen, X.-W. and Lin, X. (2014). Big data deep learning: challenges and perspectives. IEEE access 2,
514–525

Chian, V. C., Hildebrandt, M., Runkler, T., and Dold, D. (2021). Learning through structure: towards
deep neuromorphic knowledge graph embeddings. In 2021 International Conference on Neuromorphic
Computing (ICNC) (IEEE), 61–70

Chien, H.-Y. S. and Honey, C. J. (2020). Constructing and forgetting temporal context in the human
cerebral cortex. Neuron 106, 675–686

Courbariaux, M., Bengio, Y., and David, J.-P. (2014). Training deep neural networks with low precision
multiplications. arXiv preprint arXiv:1412.7024

DuBois, G. M. and Phillips, J. L. (2017). Working memory concept encoding using holographic reduced
representations. In Maics. 137–144

Frady, E. P., Kleyko, D., and Sommer, F. T. (2020). Variable binding for sparse distributed representations:
Theory and applications. arXiv preprint arXiv:2009.06734

Frady, E. P. and Sommer, F. T. (2019). Robust computation with rhythmic spike patterns. Proceedings of
the National Academy of Sciences 116, 18050–18059

Gallistel, C. R. and King, A. P. (2011). Memory and the computational brain: Why cognitive science will
transform neuroscience, vol. 6 (John Wiley & Sons)

Gayler, R. W. (1998). Multiplicative binding, representation operators & analogy (workshop poster)
Gayler, R. W. and Levy, S. D. (2009). A distributed basis for analogical mapping. In New Frontiers in

Analogy Research; Proc. of 2nd Intern. Analogy Conf. vol. 9
Ge, L. and Parhi, K. K. (2020). Classification using hyperdimensional computing: A review. IEEE Circuits

and Systems Magazine 20, 30–47
Genssler, P. R. and Amrouch, H. (2021). Brain-inspired computing for wafer map defect pattern

classification. In 2021 IEEE International Test Conference (ITC) (IEEE), 123–132

26

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

George, D. (2008). How the brain might work: A hierarchical and temporal model for learning and
recognition (Citeseer)

Haj-Ali, A., Ben-Hur, R., Wald, N., and Kvatinsky, S. (2018). Efficient algorithms for in-memory fixed
point multiplication using magic. In 2018 IEEE International Symposium on Circuits and Systems
(ISCAS) (IEEE), 1–5

Halawani, Y., Kilani, D., Hassan, E., Tesfai, H., Saleh, H., and Mohammad, B. (2021). Rram-based cam
combined with time-domain circuits for hyperdimensional computing

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017). Neuroscience-inspired artificial
intelligence. Neuron 95, 245–258

Hernández-Cano, A., Zhuo, C., Yin, X., and Imani, M. (2021). Real-time and robust hyperdimensional
classification. In Proceedings of the 2021 on Great Lakes Symposium on VLSI. 397–402

Hérnandez-Cano, A. et al. (2021). Prid: Model inversion privacy attacks in hyperdimensional learning
systems. In DAC (IEEE), 553–558

Hernández-Cano, A. et al. (2021). Reghd: Robust and efficient regression in hyper-dimensional learning
system. In DAC (IEEE), 7–12

Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019a). Floatpim: In-memory acceleration of deep neural
network training with high precision. In 2019 ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA) (IEEE), 802–815

Imani, M., Kim, Y., Riazi, S., Messerly, J., Liu, P., Koushanfar, F., et al. (2019b). A framework for
collaborative learning in secure high-dimensional space. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD) (IEEE), 435–446

Imani, M., Kong, D., Rahimi, A., and Rosing, T. (2017a). Voicehd: Hyperdimensional computing for
efficient speech recognition. In 2017 IEEE international conference on rebooting computing (ICRC)
(IEEE), 1–8

Imani, M., Kong, D., Rahimi, A., and Rosing, T. (2017b). Voicehd: Hyperdimensional computing for
efficient speech recognition. In International Conference on Rebooting Computing (ICRC) (IEEE), 1–6

Imani, M., Morris, J., Messerly, J., Shu, H., Deng, Y., and Rosing, T. (2019c). Bric: Locality-based
encoding for energy-efficient brain-inspired hyperdimensional computing. In Proceedings of the 56th
Annual Design Automation Conference 2019. 1–6

Imani, M., Rahimi, A., Kong, D., Rosing, T., and Rabaey, J. M. (2017c). Exploring hyperdimensional
associative memory. In High Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on (IEEE), 445–456

Imani, M., Yin, X., Messerly, J., Gupta, S., Niemier, M., Hu, X. S., et al. (2019d). Searchd: A memory-
centric hyperdimensional computing with stochastic training. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 2422–2433

Imani, M. et al. (2020). Dual: Acceleration of clustering algorithms using digital-based processing in-
memory. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
(IEEE), 356–371

Imani, M. et al. (2021). Revisiting hyperdimensional learning for fpga and low-power architectures. In
2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA) (IEEE),
221–234

Ji, X., Henriques, J., Tuytelaars, T., and Vedaldi, A. (2020). Automatic recall machines: Internal replay,
continual learning and the brain. arXiv preprint arXiv:2006.12323

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017). In-datacenter
performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual International

Frontiers 27

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Symposium on Computer Architecture (ISCA) (IEEE), 1–12
Kanerva, P. (1998). Encoding structure in boolean space. In ICANN 98 (Springer). 387–392
Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in distributed

representation with high-dimensional random vectors. Cognitive Computation 1, 139–159
Kanerva, P., Kristofersson, J., and Holst, A. (2000). Random indexing of text samples for latent semantic

analysis. In Proceedings of the 22nd annual conference of the cognitive science society (Citeseer), vol.
1036

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions.
In Proceedings of the IEEE conference on computer vision and pattern recognition. 3128–3137

Karunaratne, G., Le Gallo, M., Hersche, M., Cherubini, G., Benini, L., Sebastian, A., et al. (2021).
Energy efficient in-memory hyperdimensional encoding for spatio-temporal signal processing. IEEE
Transactions on Circuits and Systems II: Express Briefs 68, 1725–1729

Kim, Y., Imani, M., Moshiri, N., and Rosing, T. (2020). Geniehd: Efficient dna pattern matching accelerator
using hyperdimensional computing. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (IEEE), 115–120

Kim, Y., Imani, M., and Rosing, T. S. (2018). Efficient human activity recognition using hyperdimensional
computing. In Proceedings of the 8th International Conference on the Internet of Things (ACM), 38

Kleyko, D. and Osipov, E. (2014). Brain-like classifier of temporal patterns. In 2014 International
Conference on Computer and Information Sciences (ICCOINS) (IEEE), 1–6

Kleyko, D., Osipov, E., Papakonstantinou, N., and Vyatkin, V. (2018). Hyperdimensional computing
in industrial systems: the use-case of distributed fault isolation in a power plant. IEEE Access 6,
30766–30777

Kousik, N., Natarajan, Y., Raja, R. A., Kallam, S., Patan, R., and Gandomi, A. H. (2021). Improved salient
object detection using hybrid convolution recurrent neural network. Expert Systems with Applications
166, 114064

Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., et al. (2014).
Magic—memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs 61,
895–899

Kvatinsky, S., Ramadan, M., Friedman, E. G., and Kolodny, A. (2015). Vteam: A general model for
voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs 62,
786–790

Lee, I. and Lee, K. (2015). The internet of things (iot): Applications, investments, and challenges for
enterprises. Business Horizons 58, 431–440

Li, H., Wu, T. F., Rahimi, A., Li, K.-S., Rusch, M., Lin, C.-H., et al. (2016). Hyperdimensional computing
with 3d vrram in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient
language recognition. In Electron Devices Meeting (IEDM), 2016 IEEE International (IEEE), 16–1

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco:
Common objects in context. In European conference on computer vision (Springer), 740–755

Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J. (2007). Challenges in parallel graph processing.
Parallel Processing Letters 17, 5–20

Ma, Y., Hildebrandt, M., Tresp, V., and Baier, S. (2018). Holistic representations for memorization and
inference. In UAI. 403–413

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., et al. (2017). Mixed precision
training. arXiv preprint arXiv:1710.03740

28

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Mitrokhin, A. et al. (2019). Learning sensorimotor control with neuromorphic sensors: Toward
hyperdimensional active perception. Science Robotics 4

Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., et al. (2021). A wearable
biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nature
Electronics 4, 54–63

Montagna, F., Rahimi, A., Benatti, S., Rossi, D., and Benini, L. (2018). Pulp-hd: Accelerating
brain-inspired high-dimensional computing on a parallel ultra-low power platform. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC) (IEEE), 1–6

Neubert, P., Schubert, S., and Protzel, P. (2019). An introduction to hyperdimensional computing for
robotics. KI-Künstliche Intelligenz 33, 319–330

Nickel, M., Rosasco, L., and Poggio, T. (2016). Holographic embeddings of knowledge graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30

O’reilly, R. C. and Munakata, Y. (2000). Computational explorations in cognitive neuroscience:
Understanding the mind by simulating the brain (MIT press)

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In
International conference on machine learning (PMLR), 1310–1318

Pitas, I. (2016). Graph-based social media analysis, vol. 39 (CRC Press)
Poduval, P. et al. (2021a). Cognitive correlative encoding for genome sequence matching in

hyperdimensional system. In IEEE/ACM Design Automation Conference (DAC)
Poduval, P. et al. (2021b). Stochd: Stochastic hyperdimensional system for efficient and robust learning

from raw data. In IEEE/ACM Design Automation Conference (DAC)
Rahimi, A., Kanerva, P., Benini, L., and Rabaey, J. M. (2018). Efficient biosignal processing using

hyperdimensional computing: Network templates for combined learning and classification of exg signals.
Proceedings of the IEEE 107, 123–143

Rahimi, A. et al. (2016a). Hyperdimensional biosignal processing: A case study for emg-based hand
gesture recognition. In ICRC (IEEE), 1–8

Rahimi, A. et al. (2016b). A robust and energy-efficient classifier using brain-inspired hyperdimensional
computing. In ISLPED (ACM), 64–69

Rallapalli, S., Ma, L., Srivatsa, M., Swami, A., Kwon, H., Bent, G., et al. (2019). Sense: Semantically
enhanced node sequence embedding. In 2019 IEEE International Conference on Big Data (Big Data)
(IEEE), 665–670

Räsänen, O. J. and Saarinen, J. P. (2015). Sequence prediction with sparse distributed hyperdimensional
coding applied to the analysis of mobile phone use patterns. IEEE transactions on neural networks and
learning systems 27, 1878–1889

Reijneveld, J. C., Ponten, S. C., Berendse, H. W., and Stam, C. J. (2007). The application of graph
theoretical analysis to complex networks in the brain. Clinical neurophysiology 118, 2317–2331

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. arXiv preprint arXiv:1506.01497

Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., and Özsu, M. T. (2017). The ubiquity of large graphs and
surprising challenges of graph processing. Proceedings of the VLDB Endowment 11, 420–431

Schacter, D. L. and Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron 44,
149–160

Simpkin, C., Taylor, I., Bent, G. A., de Mel, G., and Rallapalli, S. (2017). Semantic workflow encoding
using vector symbolic architectures

Frontiers 29

Prathyush Poduval et al. GrapHD: Graph-based Hyperdimensional Cognitive Learning

Sodhani, S., Chandar, S., and Bengio, Y. (2020). Toward training recurrent neural networks for lifelong
learning. Neural computation 32, 1–35

Stewart, T., Choo, F.-X., and Eliasmith, C. (2012). Spaun: A perception-cognition-action model using
spiking neurons. In Proceedings of the Annual Meeting of the Cognitive Science Society. vol. 34

Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J., Scheltens, P., et al. (2013).
Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiology
of aging 34, 2023–2036

Van Kranenburg, R. and Bassi, A. (2012). Iot challenges. Communications in Mobile Computing 1, 1–5
Wiecki, T. V., Poland, J., and Frank, M. J. (2015). Model-based cognitive neuroscience approaches to

computational psychiatry: clustering and classification. Clinical Psychological Science 3, 378–399
Zou, Z., Alimohamadi, H., Imani, F., Kim, Y., and Imani, M. (2021a). Spiking hyperdimensional network:

Neuromorphic models integrated with memory-inspired framework. arXiv preprint arXiv:2110.00214
Zou, Z., Kim, Y., Imani, F., Alimohamadi, H., Cammarota, R., and Imani, M. (2021b). Scalable edge-based

hyperdimensional learning system with brain-like neural adaptation. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. 1–15

30

	Introduction
	Preliminary
	Hyperdimensional Primitives
	Motivation & Overview

	Hyperdimensional Graph Representation
	Unweighted, Undirected Graphs
	Unweighted, Directed Graphs
	Weighted Graphs
	Graph Memory Refinement

	Algorithms with GrapHD Representation
	Information Retrieval
	Node Memory Reconstruction
	Graph Reconstruction
	Graph Matching

	Neuromorphic Hardware Acceleration
	NOR-based In-Memory Computing
	DPIM Operations

	Applications Evaluation
	Experimental Setup
	Graph Memory Refinement
	Graph Reconstruction
	Node Memory Reconstruction
	Graph Matching
	Shortest Path Between Nodes
	Object Detection
	Hardware Acceleration
	Graph Decoding With Nengo

	Conclusion

