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Abstract—Brain-inspired hyperdimensional (HD) computing
emulates cognition tasks by computing with hypervectors as
an alternative to computing with numbers. At its very core,
HD computing is about manipulating and comparing large
patterns, stored in memory as hypervectors: the input symbols
are mapped to a hypervector and an associative search is per-
formed for reasoning and classification. For every classification
event, an associative memory is in charge of finding the closest
match between a set of learned hypervectors and a query
hypervector by using a distance metric. Hypervectors with
the i.i.d. components qualify a memory-centric architecture to
tolerate massive number of errors, hence it eases cooperation of
various methodological design approaches for boosting energy
efficiency and scalability. This paper proposes architectural
designs for hyperdimensional associative memory (HAM) to
facilitate energy-efficient, fast, and scalable search operation
using three widely-used design approaches. These HAM designs
search for the nearest Hamming distance, and linearly scale
with the number of dimensions in the hypervectors while
exploring a large design space with orders of magnitude
higher efficiency. First, we propose a digital CMOS-based HAM
(D-HAM) that modularly scales to any dimension. Second,
we propose a resistive HAM (R-HAM) that exploits timing
discharge characteristic of nonvolatile resistive elements to
approximately compute Hamming distances at a lower cost.
Finally, we combine such resistive characteristic with a current-
based search method to design an analog HAM (A-HAM)
that results in faster and denser alternative. Our experimental
results show that R-HAM and A-HAM improve the energy-
delay product by 9.6× and 1347× compared to D-HAM
while maintaining a moderate accuracy of 94% in language
recognition.

Keywords-Associative memory; Hyperdimensional comput-
ing; Neuromorphic computing; Non-volatile memory.

I. INTRODUCTION

Maintaining a deterministic model of computing ulti-
mately puts a lower bound on the amount of energy and
performance scaling that can be obtained. This bound is
primarily set by the variability and reliability of the com-
posing devices. It is therefore worth exploring alternative
computational models that enable further size and energy
scaling by abandoning the deterministic requirement. At the
heart of this paper is an alternative model of computing that
help to circumvent or redefine these bounds. Hyperdimen-
sional (HD) computing [1] is based on the understanding
that brains compute with patterns of neural activity that
are not readily associated with numbers. However, due to
the very size of the brain’s circuits, we can model neural
activity patterns with points of a high-dimensional space,
that is, with hypervectors. When the dimensionality is in the

thousands (e.g., D=10,000), it is called hyperdimensional.
Operations on hypervectors can be combined into interesting
computational behavior with unique features that make them
robust and efficient.

HD computing builds upon a well-defined set of opera-
tions with random hypervectors, is extremely robust in the
presence of failures, and offers a complete computational
paradigm that is easily applied to learning problems [1]. Its
main differentiation from other paradigms is that data are
represented as approximate patterns, which can favorably
scale for many learning applications. Examples include
analogy-based reasoning [2], latent semantic analysis [3],
language recognition [4], [5], text classification [6], ges-
ture recognition [7] and prediction from multimodal sensor
fusion [8], [9]. These applications use various encoding
operations on sparse or dense hypervectors, but the common
denominator of all them is the extensive use of search
operation in the associative memory requested for every
event of classification or recognition.

In this paper, we propose three architectural designs for
hyperdimensional associative memory (HAM). We exploit
the holographic and distributed nature of hypervectors to
design memory-centric architectures with no asymmetric
error protection that further allows us to effectively combine
approximation techniques in three widely-used methodolog-
ical design approaches: digital design, memristive-based
design, and analog design. We propose a digital HAM (D-
HAM) using the CMOS technology, a resistive HAM (R-
HAM) using the resistive dense elements, and an analog
HAM (A-HAM) using current-based analog search cir-
cuitries. These HAM designs exploit approximation tech-
niques including structured sampling and voltage overscaling
with bit width optimization for current-based comparators
that cooperatively explore a large design space. We assess
the benefits and limitations of each design approach by
measuring energy, delay, their product, and area for varying
parameters including dimensions, number of classes, and
classification accuracy. Our experimental results show that
R-HAM improves the energy-delay product by 9.6× and
the area by 1.4× compared to D-HAM; A-HAM surpasses
these improvements to 1347× and 3× respectively, while
maintaining a moderate classification accuracy of 94% in
language recognition. Nevertheless, A-HAM becomes sus-
pectable to process variations in low voltages.

The rest of paper is organized as follows: Section II pro-
vides background in HD computing. Section III describes the



details of the proposed HAM designs. Section IV presents
our experimental results. Section V concludes this paper.

II. HYPERDIMENSIONAL COMPUTING

The brain’s circuits are massive in terms of numbers
of neurons and synapses, suggesting that large circuits are
fundamental to the brain’s computing. HD computing [1]
explores this idea by looking at computing with ultra-
wide words – that is, with very high-dimensional vectors,
or hypervectors. There exist a huge number of different,
nearly orthogonal hypervectors with the dimensionality in
the thousands [10]. This lets us combine such hypervectors
into a new hypervector using well-defined vector space
operations, while keeping the information of the two with
high probability.

Hypervectors are holographic and (pseudo)random with
i.i.d. components. A hypervector contains all the informa-
tion combined and spread across all its components in a
full holistic representation so that no component is more
responsible to store any piece of information than another.
These unique features make a hypervector robust against
errors in its components. Hypervectors can be manipulated
with arithmetic operations, such as binding that forms a
new hypervector which associates two hypervectors, and
bundling that combines several hypervectors into a single
composite hypervector. The reasoning in HD computing is
based on similarity between the hypervectors. This similarity
is measured by a distance metric. In this paper, we target an
application of HD computing for identifying the language
of text samples, based on encoding consecutive letters into
a hypervector.

A. Language Recognition: An Example

Recognizing the language of a given text is the first step in
all sorts of language processing, such as text analysis, cate-
gorization, translation, etc. High-dimensional vector models
are popular in natural-language processing and are used
to capture word meaning from word-use statistics. These
vectors are often called semantic vectors. Ideally, words with
a similar meaning are represented by semantic vectors that
are close to each other in the vector space, while dissimilar
meanings are represented by semantic vectors far from each
other [11]. Latent semantic analysis [11] is a standard way
of making semantic vectors. It relies on singular value
decomposition of a large matrix of word frequencies. It is
computational heavy and scales poorly.

Random indexing [3] is an algorithm based on high
dimensionality and randomness and it provides a simple and
scalable alternative to methods based on principal compo-
nents, such as latent semantic analysis. Random indexing
represents information by projecting data onto vectors in
a high-dimensional space. It is incremental and computes
semantic vectors in a single pass over the text data. With
the dimensionality in the thousands it is possible to calculate
useful representations with fast, and highly scalable algo-
rithms. We use random indexing for identifying the source

language of text samples by generating and combining letter
n-grams – n consecutive sequence of letters.

We accordingly design an architecture for recognizing
a text’s language by generating and comparing text hy-
pervectors [4], [5]: the text hypervector of an unknown
text sample is compared for similarity to precomputed text
hypervectors of known language samples – the former is
referred to as a query hypervector, while the latter are re-
ferred to as learned language hypervectors. The architecture
has two main modules: encoding and associative memory.
The encoding module projects an input text, composed of a
stream of letters, to a hypervector in high-dimensional space.
Then this hypervector is broadcast to the associative mem-
ory module for comparing with a set of learned language
hypervectors. The associative memory returns the language
that has the closet match; its energy consumption is about
half of the HD architecture [5]. In the following, we describe
these two modules in details.

1) Encoding Operations: The encoding module accepts
a sequence of letters from a text and computes a hyper-
vector that represents the text. Random indexing generates
seed hypervectors that are initially taken from a 10,000-
dimensional space and have an equal number of randomly
placed 0s and 1s, i.e., {0,1}10,000 [12]. Such hypervectors
are used to represent the basic elements, e.g., the 26 letters
of the Latin alphabet plus the (ASCII) space for text inputs.
An item memory assigns every hypervector to a letter; this
assignment is fixed throughout the computation, and formed
27 unique orthogonal hypervectors. The similarity between
two hypervectors is measured by Hamming distance denoted
as δ 1.

The arithmetic operations on the hypervectors are defined
as follows. Binding of two hypervectors A and B is done
by component-wise XOR and denoted as A⊕ B. The re-
sult of the operation is new hypervector that is dissimilar
to its constituent vectors i.e., δ (A ⊕ B,A) ≈ 5,000) for
D = 10,000; hence XOR is well suited for associating two
hypervectors. Binding is used for variable-value association
and, more generally, for the mapping. Bundling operation
is done via component-wise majority function and denoted
as [A + B +C]. The majority function is augmented with
a method for breaking ties if the number of component
hypervectors is even. The result of the majority function
preserves similarity to its component hypervectors i.e.,
δ ([A+B+C],A) < 5,000. Hence, the majority function is
well suited for representing sets. The third operation is a
permutation, ρ(A), that rotates the hypervector coordinates.
Practically, it can be implemented as a cyclic right-shift
by one position. The permutation operation generates a
hypervector, which is unrelated to the given hypervector
δ (ρ(A),A) ≈ 5,000. This operation is commonly used for
storing a sequence of tokens in a single hypervector. In
geometrical sense, the permutation rotates the hypervector
in the space.

1Hamming distance, distance, and δ are used interchangeably through-
out this paper.
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For example, the sequence trigram (n = 3) of a-b-c, is
stored as the following hypervector, ρ(ρ(A)⊕ B)⊕C =
ρ(ρ(A))⊕ ρ(B)⊕C. This efficiently distinguishes the se-
quence a-b-c from a-c-b, since a rotated hypervector is
uncorrelated to all the other hypervectors. The encoding
module bundles all the trigram hypervectors across the
input text to generate the text hypervector as the output
of encoding. This encoding is used for both training and
testing. During training when the language of the input text
in known, we refer to the text hypervector as a learned
language hypervector. Such learned hypervectors are stored
in the associative memory. During testing, we call the text
hypervector as a query hypervector. The query hypervector is
sent to the associative memory module to identify its source
language.

2) Associative Memory: We consider 21 European lan-
guages [13], consequently at the end of training phase, we
will have 21 language hypervectors, each of which is stored
separately in a row of the associative memory. Determining
the language of an unknown text is done by comparing
its query hypervector to all the learned hypervectors that
results in 21 Hamming distances. Finally, the associative
memory finds the minimum Hamming distance and returns
its associated language as the language that the unknown
text has been written in.

As mentioned earlier, HD computing offers a complete
and universal computational paradigm. For instance, the
aforementioned algorithm can be reused to perform other
tasks such as classification of news articles by topic with
similar success rates [6]. While these applications have
a single streaming input, other applications with analog
and multiple sensory inputs can equally benefit from HD
computing [8], [9], [7].

B. Robustness
HD computing is amazingly tolerant to errors. The ran-

dom hypervector seeds are independent and identically
distributed, a property that is preserved by the encoding
operations (binding, bundling, and permutation) performed
on them. Hence, a failure in a component is not “conta-
gious” [5].

Figure 1 shows the classification accuracy as a function
of number of bits error in computing Hamming distance.
As shown, HD computing still exhibits its maximum clas-
sification accuracy of 97.8% with up to 1,000 bits error in
computing the distance (i.e., when up to 10% of hypervector
components are faulty). We exploit such robustness property
of HD computing to design efficient associative memory
that can tolerate the error in any part of a hypervector.
Further increasing the error in distance metric to 3,000 bits,
slightly decreases the classification accuracy to 93.8%. We
call this range of the classification accuracies as moderate
accuracy that has up to 4% lower accuracy compared the the
maximum of 97.8%. Accepting the moderate accuracy opens
more opportunity for aggressive optimizations. However,
increasing the error to 4,000 bits reduces the classification
accuracy below 80%.

Figure 1. Language classification accuracy with wide range of errors in
Hamming distance using D = 10,000.

III. HYPERDIMENSIONAL ASSOCIATIVE MEMORY

The state-of-the-art associative memories require im-
provements for comparing vectors with a dimensionality in
thousands [5], [14], [15], [16]. They also lack techniques
for uniformly tolerating errors in any vector component and
hence cannot efficiently exploit the holographic feature of
hypervectors. Further, most of them are implemented as a
content addressable memory (CAM) without ability of find-
ing the minimum distance [14], [15], [16]. In this section, we
propose HAM architectures for three methodological design
approaches of digital, memristive, and analog with ability of
finding the minimum distance.

A. Digital HAM

Conventional CAMs typically check the availability of a
input query pattern among the stored (or learned) patterns,
however finding the closest pattern is of our need for reason-
ing among hypervectors. We propose a digital CMOS-based
hyperdimensional associative memory, called D-HAM, that
provides faster search compared to [5]. After the training
phase, D-HAM stores a set of learned hypervectors in a
CAM. For an input query hypervector, D-HAM finds a
learned hypervector that has the nearest Hamming distance
to the query.

Figure 2 shows the structure of proposed D-HAM con-
sisting of two main modules: (1) CAM: it forms an array
of C × D storage elements, where C is the number of
hypervectors as the distinct classes and D is the dimension
of a hypervector. During a classification event, each learned
hypervector is compared with an input query hypervector
using an array of XOR gates. An XOR gate detects the
similarity between its inputs by producing a 0 output as the
match and a 1 output as the mismatch. Therefore, in every
row the number of XOR gates with an output of 1 represents
Hamming distance of the input query hypervector with the
corresponding hypervector that is stored in the row. (2)
Distance computation: it composed of parallel counters and
comparators that compute the distances using the outputs of
XOR gates. D-HAM requires a set of C counters each with
logD bits. Each counter is assigned to a row, and iterates
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Figure 2. Overview of D-HAM.
Table I

ENERGY AND AREA PARTITIONING FOR D-HAM.

D-HAM Modules Area (mm2) Energy (pJ)

D=10,000 CAM Array 15.2 4976.9
Counters and comparators 10.9 1178.2

d=9,000 CAM Array 13.7 4479.2
Counters and comparators 10.2 1131.1

d=7,000 CAM Array 10.6 3483.8
Counter and comparator 8.3 883.6

through D output bits of the XOR gates to count the number
of 1s. The value of a counter determines the distance of
the input query hypervector with the corresponding stored
hypervector in the row. Finally, D-HAM requires to find
the minimum distance among the the C counter values. It
structures a binary tree of comparators with height of logC
to find a hypervector with the minimum distance from the
input query hypervector.

The D-HAM structure takes advantage of a scalable digi-
tal design that can be easily extended arbitrary dimensions.
Table I shows the partitioning of the energy consumption and
the area of D-HAM configured for C = 100 and D= 10,000.
This D-HAM requires a CAM array including 100×10,000
XOR gates, 100 counters, and 99 comparators of 14 bits.
The result shows that D-HAM consumes 6155.2 pJ energy
for each query search, where the CAM array consumes
81% of the total energy. The CAM array is the energy
bottleneck since each component of the query hypervector
needs to be compared with the same component of the
learned hypervectors. This imposes a high switching activity
due to nature of XOR gates consuming considerable amount
of energy.

1) Accuracy-Energy Tradeoff in D-HAM: To address this
energy issue in D-HAM, we exploit the distributed prop-
erty of hypervectors that enables us to accurately compute
Hamming distance from an arbitrary subset of hypervector
components (d < D). This enables D-HAM to applies sam-
pling on the hypervector with i.i.d. components. As shown in
Figure 1, such a sampling ratio can impact the classification
accuracy [17]. To meet the maximum classification accuracy,
D-HAM ignores 1,000 bits and computes Hamming distance

for the rest of d = 9,000 bits. In this way, D-HAM ensures
the error-free computation of Hamming distance on 90% of
the hypervector bits while intentionally eliminating the 10%
of the bits. Further, ignoring the dimensions up to 3,000
bits (i.e., d = 7,000) guarantees the moderate classification
accuracy (see Figure 1). Such sampling results in energy
saving in D-HAM which is linearly related to the size of
sampling: 7% (or 22%) energy saving is achieved with
d = 9,000 (or d = 7,000) for the maximum (or moderate)
classification accuracy compared to baseline D-HAM with
D = 10,000.

We should also note that other CMOS-based digital im-
plementations of associative memories have similar energy
inefficiencies. For instance, SRAM-based CAMs consume
8× higher energy than the SRAM cells for each search op-
eration [18]. In addition, like all CMOS-based designs, these
CAMs also have large idle power. High energy consumption
of such ternary CAMs prevents their application for large
pattern classification and ultimately limits their usage to
networking and IP lookup [19]. In the next section, we show
how this problem can be addressed by using new memory
technologies.

B. Resistive Memory
Higher density and lower energy consumption of non-

volatile memories (NVM) open new opportunities to design
energy-efficient CAMs. NVM-based CAMs can be designed
using different NVM elements such as resistive memory
(i.e., memristor). Resistive CAMs have comparable read
operation to SRAMs enabling their extended application to
approximate computing [14]. In this work, we use CAMs
based on the resistive elements and address their endurance
issue by limiting the write stress only to once for each
training session.

The general structure of a resistive element (memristor)
is based on metal/oxide/metal. Two metal layers (e.g., Pt)
sandwich an oxide layer based on Ta, Ti and HF [20],
[21], [22]. The metal/diode connection usually shows Ohmic
behavior. The data stores on cell based on the memristor
resistance state. The device can switch to ON mode by
applying a negative bias and to OFF mode by applying a
positive voltage across the device. The read operation can
perform by applying a small voltage across source line (SL)
and read bitline (BL) nodes and sensing the current or the
dropped voltage using a sense amplifier.

C. Resistive HAM
In this section, we describe our design method to utilize

resistive elements in HAM called a resistive HAM or R-
HAM. Figure 3(a) shows the overview of the proposed R-
HAM, consisting of two main modules. (1) Resistive CAM:
it stores the learned hypervectors by using a crossbar of
resistive cells. The resistive CAM is partitioned to M stages
as shown in Figure 3(b) each containing D/M bits with C
rows, where D and C are the hypervector dimension and
the number of classes, respectively. Each CAM stage finds
the distance between the query hypervector and the learned
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hypervectors in parallel. (2) Distance computation: R-HAM
uses a set of parallel counters to count the number of
Hamming distances in all partial CAM stages corresponding
to each row. This counter is different from the conventional
binary counters that D-HAM uses because the CAM stages
in R-HAM generate a non-binary code (See Figure 3(c)).
This new coding has a lower switching activity compared to
the dense binary coding. More details about the functionality
and implementation of this module will be explained in the
next section. Finally, R-HAM uses similar comparators as D-
HAM to find a row with the minimum Hamming distances.

Although, both D-HAM and R-HAM use similar counters
and comparators, R-HAM achieves higher energy efficiency.
As mentioned in Section III-A, D-HAM spends 81% of
the total energy consumption and 58% of the total area for
storing and comparing the hypervectors in the CAM array
which is replaced with the dense memristive crossbar in R-
HAM. The memristive CAM improves both energy and area
of R-HAM: (1) The energy is reduced due to the lower
switching activity in the crossbar compared to D-HAM
which uses XOR gates to find mismatches. Table II shows
the average switching activity of D-HAM and R-HAM for
different block sizes. R-HAM shows lower switching activity
in large block sizes, and exhibits about 50% lower switching
activity compared to D-HAM with blocks of 4 bits. Further,
the resistive CAM array can operate in the lower supply
voltage bringing additional energy saving. (2) The area is
reduced by tightly integrating the storage array and the
mismatch finding logic in the same crossbar. In contrast
to D-HAM which uses a large XOR array to determine the
mismatches, R-HAM uses high-density memristive crossbars
for both storage and partial determination of mismatches.

1) Nearest Distance in Resistive Crossbars: Our R-HAM
finds the nearest distance by efficiently using timing property
of memeritive crossbars. R-HAM consists of a CAM array
where all cells in a row share the same match line (ML)
to represent a hypervector. The search operation has two
main phases: precharging and evaluation. There is a set
of C row drivers that precharge all the MLs before the
search operation. In the evolution, a set of input buffers
distribute the components of the input query among all the
rows through D vertical bitlines (BLs). The buffer role is to
strengthen the input signal such that all the rows receive the
signal at the same time. During the evaluation, any cell with
a value differing from the input query component discharges
the ML. Therefore, all MLs will be discharged, except the
ML for the row that contains all matched cells. This matched
row can be detected by the sense amplifier circuitry and by
sampling the ML voltage at certain time.

Table II
AVERAGE SWITCH ACTIVITY OF D-HAM AND R-HAM.

Block size R-HAM D-HAM

1 bit 25% 25%
2 bits 21.4% 25%
3 bits 18.3% 25%
4 bits 13.6% 25%

Figure 4(a) shows the normalized ML discharging voltage
curves during the search operation for different distances
(i.e., the number of mismatches on the ML). The ML dis-
charging speed depends on the distance value. For example,
a row that has a Hamming distance of 2 from the input query
discharges ML about 2× faster than a row with a Hamming
distance of 1. This timing characteristic can be used to
identify the distance of the query hypervector with the
learned hypervectors. However, there is not a linear depen-
dency between the speed of ML discharging and Hamming
distances. As Figure 4(a) shows, the first mismatch usually
has higher impact on ML discharging compared to the last
mismatch. Because the ML discharging current saturates
after having the first few mismatches, many later mismatches
do not change the ML discharging speed. For example,
there is a distinguishable time difference between Hamming
distances of 1 and 2 while Hamming distances of 4 and 5
have similar ML discharging time. In this experiment, each
row has solely 10 bits that clearly indicates the limitation of
the method for higher dimensionality. Such restriction has
been already observed that limits the approximate search for
resistive CAMs with small dimensionality of 64 bits [14].

To address this non-uniform ML discharging time, we
split the R-HAM array to M shorter blocks. Among various
configurations, we have observed that the maximum size
of a block can be 4 bits for accurate determination of the
different distances. To further alleviate the current saturation
issue, we use memristor devices with reported large ON
resistance [23] that provide stable ML voltage for the better
distinction between the distances at a cost to slower search
operation. Figure 4(b) shows the ML discharging time of
the 4 bits block for different distances. This figure shows
that the timing difference between the distances become
approximately uniform.

We accordingly design a sense amplifier for R-HAM that
can identify the difference between Hamming distances of 1,
2, 3 and 4 by measuring the ML discharging time. As shown
in Figure 4(b), sampling at T0 corresponds to ML without
any mismatches (i.e., a Hamming distance of 0). Similarly
sampling at T1 detects a row with a Hamming distance of 1
and 0. Figure 3(c) shows the structure of the sense amplifier
with the tuned sampling time to detect each distance. Our
design uses four distinct sense amplifiers to detect Hamming
distances of 0, 1, 2, and 3. Then, based on table shown in
Figure 3(c), it can identify the number of mismatches on
each row by generating a non-binary code. We use a buffer
to generate a small delay (≈0.1 ns) on the clock of the sense
amplifiers. To justify this delay, we change the size of buffer
to set the buffer delay. To guarantee the correct functionality
in the presence of variations, we design the CAM and sense
circuitry considering 10% process variation on the transistors
(size and threshold voltage) and the resistance values.

Figure 3(c) shows inside of a block of R-HAM with 4
bits. To compute a distance from the outputs of these blocks
a counter counts the number of mismatches in all partial
blocks. This counter is designed to work with the coding
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Figure 3. Overview of R-HAM: (a) Resistive CAM array with distance computation; (b) A 4 bits resistive block; (c) Sensing circuitry with non-binary
code generation.

produced as the output of the sense amplifiers. The proposed
encoding decreases the bit difference between the output
signals. For example, patterns with distance of 3-bits and
4-bits have three bits difference in the binary representation
(0011vs0100), while encoding reduces this switching to
single bit (1110vs1111). Mathematically considering all pos-
sible matching combinations shows that proposed encoding
significantly reduces R-HAM switching activity compared
to D-HAM especially when using larger block sizes (See
Table II).

2) Accuracy-Energy Tradeoff in R-HAM: To exploit the
robustness of HD computing for improving energy effi-
ciency, R-HAM supports tow techniques. First, it applies
a sampling technique similar to D-HAM by ignoring up to
10% of the blocks, i.e., accepting up to 1,000 bits error
in the distance (See Figure 1). These 250 blocks (out of the
total 2500 blocks) can be directly excluded form the R-HAM
design to save energy while meeting the maximum classi-
fication accuracy. Further ignoring the number of blocks to
750 decreases the classification accuracy to the moderate
level.

Second technique leverages the holographic property of

the hypervectors by intentionally distributing the erroneous
bits to the large number of blocks rather than jamming
them into few blocks. To do so, R-HAM overscales the
supply voltage of every block to 780 mV such that a block
is restricted to undergo a maximum of one bit error in
Hamming distance (See Figure 4(c)). With this technique,
40% (or 100%) of the total blocks can operate with a lower
voltage while providing the maximum (or the moderate)
classification accuracy. As a results, these blocks quadrat-
ically save the energy while computing a distance metric
in which the cumulative effect of their errors is acceptable
for the classification using HD computing. To implement
the voltage overscaling, we use an energy-efficient and fast
voltage supply boosting technique [24].

Figure 5 compares the energy saving of R-HAM using
the two techniques of sampling and voltage overscaling.
Targeting the maximum accuracy, the sampling technique
achieves a relative energy saving of 9% by turning 250
blocks off, while the voltage overscaling technique achieves
almost 2× higher saving by reducing the voltage for 1000
blocks. This trend of relative energy saving is consistent
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Figure 4. Match line (ML) discharging time and its relation to detecting Hamming distance for various CAMs.

Figure 5. Energy saving of R-HAM using structured sampling versus
distributed voltage overscaling.

with targeting the moderate accuracy: 22% by turning off
750 blocks, and 50% by reducing the voltage for all the
2500 blocks. However, R-HAM can not maintain such linear
energy saving beyond 2,500 bits error in the distance. This is
because all the blocks are already under the voltage overscal-
ing, and accepting more than 2,500 bits error requires some
blocks to accept a Hamming distance of 2. The energy gain
that a block of R-HAM can achieve by accepting a distance
of 2 (by operating at 720 mV) is very similar to the distance
of 1 (i.e., 780 mV).

D. Analog HAM Design

We propose an analog HAM (A-HAM) to exploit the
timing characteristics of the ML by observing discharging
current to compute its distance. Figure 6(a) shows the overall
architecture of the proposed A-HAM. We use a memristor
device with high OFF/ON resistance ratio [25] to design a
ternary CAM (TCAM) cell. The A-HAM consists of an array
of TCAM cells forming a D×C crossbar similar to R-HAM.
The A-HAM design searches for the query hypervector
among all TCAM rows in parallel and then compares their
currents using a set of Loser Takes All (LTA) blocks [26].

The LTA blocks form a binary tree with height of logC.
The ML discharging current is related the number of

mismatched cells. A buffer block senses the ML current and
sends it to LTA block to be compared with the next row. A
row with a large number of mismatches has a higher amount
of discharging current. The goal is to find a row that has
the minimum number of mismatches and thus the minimum
discharging current. Therefore, the binary tree blocks of LTA
compares the output current of every two neighbor rows to
find the row that has the minimum Hamming distance with
the query hypervector.

However, such current comparison cannot be directly
scaled to large dimensions. This is because the discharging
current of the rows will be very close, hence the precision of
the LTA cannot determine the minimum distance. Moreover,
both ML discharging current and the LTA blocks are sen-
sitive to the process and the voltage variations. To address
these issues, we propose ML stabilizer and multistage search
operation techniques in the following sections.

1) Mtach Line Stabilizer: In conventional TCAMs, an
ML current saturation, described in the following, is the
main limitation in identifying the number of mismatches.
For instance, when a single cell in a row does not match with
an input data, the ML discharges with I1 current. However,
having two mismatched cells does not result in the same I1
leakage current on every cell causing a total discharging
current of less than 2*I1. This non-linearity of current-
voltage dependency is more pronounced in large dimensions,
where having D > 7 cells has minor impact on the total
ML discharging current. This is so-called current saturation
and occurs due to the ML voltage-current dependency. In
the current saturation, a large number of mismatched cells
drops the ML voltage immediately and decreases the passing
current through each cell. This makes detecting the exact
number of mismatches challenging.

To identify the number of mismatches on a row, we need
to have a fixed supply voltage on the ML during the search
operation. In this condition, the ML voltage depends on the
number of mismatched cells. In contrast to the conventional
TCAMs which work based on ML discharging voltage, our
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Figure 6. Overview of A-HAM: (a) Resistive CAM array with LTA comparators; (b) Circuit details of two rows.

design is current-based. A-HAM stabilizes the ML in a fixed
voltage during the search operation and identifies the number
of mismatched cells by tracking the current passing through
the sense circuitry.

Figure 6(b) shows two rows of the proposed A-HAM.
Before the search operation, the ML is charged using a
precharge transistor (Mp). During the precharge mode, all A-
HAM cells deactivate by connecting select lines of all cells
to zero voltage. After precharge mode, the search operation
starts on the TCAM cells. The select lines activate TCAM
cells by the input data. Any cell that has a different value
with the select line value discharges the ML. In this case the
MB1 transistor is activated and tries to fix the ML voltage
to the supply voltage. Thus the currents of all mismatched
cells pass through the MB1 and MB2 transistors. The input
buffer mirrors the MB1 current to a branch containing the
MB3 transistor. This stage sends the data to the LTA block
to be compared with the discharging current of the next row.
The value of IL1 current linearly depends on the number of
mismatches in each row. The precision of the detection and
the number of mismatches depend on the accuracy of the
LTA block.

The LTA block accepts two input currents and returns
a line with the lower current (See Figure 6(b)). The LTA
block is based on the current mirror and a reset circuitry
which compares the currents in a different resolution. The
bit resolution of this comparison identifies the number of
mismatches that our design can detect.

2) Multistage A-HAM: The ML discharging current in-
creases the energy consumption of A-HAM to higher than
that of a conventional TCAM. To address this issue, we
use resistive devices with high ON resistance [25] to reduce
the discharging current of each missed cell. However, the
large ON resistance imposed the following issues: (1) It
degrades the sense margin by decreasing the ON to OFF
current ratio. Therefore, we use the memristor devices with
very large OFF/ON resistance [25] to provide enough sense
margin and stability. (2) In addition, the large ON resistance
slows down the search operation by increasing the response

Figure 7. Minimum detectable distance in A-HAM.

time (T = RC). This creates a tradeoff between the energy
consumption and search speed. Our evaluation shows that A-
HAM with RON ∼ 500K and ROFF ∼ 100G is able to identify
a Hamming distance of up to 512 bits using the LTA blocks
with 10 bits resolution. However, increasing the dimension
limits the distance difference that can be identified across the
rows. Figure 7 shows the the minimum detectable Hamming
distance with increasing the dimension. For D=256 and
lower, A-HAM provides a resolution of one bit in comparing
Hamming distances of various rows. Increasing D=10,000
increases the minimum detectable distance to 43 bits, i.e.,
A-HAM using a single stage can not differentiate between
Hamming distances lower than 42. This precision loss in
comparing the distances can be improved by the following
multistage technique.

We observed that the ML voltage cannot be fixed during
the search operation for the large dimensions. This degrades
the resolution of identifying the distances for the hyper-
vectors with D=256 and higher. Even using the LTA with
higher resolution (>10 bits) cannot provide the acceptable
accuracy. To address this issue, we split the search operation
to multiple shorter stages and calculate the mismatched
current of each part separately. Then, an additional current
mirror circuit adds these partial currents (I1 and I2 currents
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Figure 8. Multistage A-HAM architecture.

in the example of Figure 8) in node A. The LTA compares
the IL currents for different rows. In A-HAM, the minimum
detectable distance can be controlled by the number stages
and the bit width of the LTA blocks.

Figure 7 shows the minimum distance that can be identi-
fied by A-HAM using multi stages; the top X-axis shows the
number stages and the LTA bit resolution that is used for
achieving such distance resolution. This multistage search
technique enables the extension of the minimum detectable
distance of 1 to D=512. For D=10,000, the minimum de-
tectable Hamming distance is improved to 14 bits using
14 stages. This precision in distinguishing the distances is
sufficient to maintain the classification accuracy. We observe
that the minimum Hamming distance among any learned
language hypervector with the other 20 learned language
hypervectors is 22; and the next minimum distance is 34.
Intuitively, hypervector within a language family should
be closer to each other than hypervectors for unrelated
languages. Therefore, the LTA blocks with the minimum
detectable Hamming distance lower than 22 bits does not im-
pose any misclassification (the boarder is shown in Figure 7).
However, increasing the dimensionality, or the variations
in the process and the voltage of the LTA blocks can
increase the minimum detectable distance that degrades the
classification accuracy discussed in Section IV-F.

3) Accuracy-Energy Tradeoff in A-HAM: A-HAM has
three main sources of the energy consumption: the resistive
CAM, the sense circuitry, and the LTA blocks. For the CAM
with large number of rows, the input buffers slow down
the search operation and dominate the CAM energy. The
sense circuitry fixes the ML voltage level and works as
the sense amplifier. Its energy consumption is related to
the average time that the search operation is continued. Our
results show that LTA blocks are the main source of A-HAM
energy consumption in large sizes. The LTA bit width can
be reduced to lower the energy consumption at a cost to
loss of classification accuracy. For D=10,000, we optimize
the bit with of the LTA blocks to 14 bits (and 11 bits) such
that A-HAM with 14 stages can meet the maximum (and
the moderate) classification accuracy while improving its
relative energy-delay product by 1.3× (and 2.4×).

IV. EXPERIMENTAL RESULTS

In this section, we first present our experimental setup for
the application of language recognition and its dataset. We

Table III
RECOGNITION ACCURACY AS A FUNCTION OF D.

Dimensionality (D) 256 bits 512 bits 1K bits 2K bits 4K bits 10K bits

D-HAM and R-HAM 69.1% 82.8% 90.4% 94.9% 96.9% 97.8%
A-HAM 69.1% 82.8% 90.4% 94.9% 96.5% 97.3%

then compare energy, delay, area, scalability and accuracy
of the proposed D-HAM, R-HAM, A-HAM.

A. Language Recognition Dataset

We consider an application for recognition of 21 European
languages. The sample texts are taken from the Wortschatz
Corpora [13] where large numbers of sentences for a selected
languages are available. We train each language hypervector
based on about a million bytes of text. To test the ability of
identifying the language of unseen text samples, we select
test sentences from Europarl Parallel Corpus [27] as an
independent text source. This corpus provides 1,000 samples
of each language, and each sample is a single sentence. The
accuracy recognition metric used throughout this paper is the
percentage of these 21,000 test samples that are identified
correctly. This accuracy is measured as the microaveraging
that gives equal weight to each per-sentence classification
decision, rather than per-class.

B. Experimental Setup for HAM

For D-HAM, we use a standard digital ASIC flow to
design dedicated hardware. We describe D-HAM, in a fully
parameterized manner, using RTL System-Verilog. For the
synthesis, we use Synopsys Design Compiler with the TSMC
45 nm technology library, the general purpose process with
high VT H cells. The design is optimized for a cycle time
of 160 ns. We extract its switching activity during pos-
synthesis simulations in ModelSim by applying the test
sentences. Finally, we measure their power consumptions
using Synopsys PrimeTime at (1 V, 25 ◦C, TT) corner.

We design circuit-level R-HAM and A-HAM using
HSPICE simulator in 45 nm technology. For the memristive
crossbar, we use devices with large OFF/ON resistance ratio
to design the stable CAM with large sense margin [28].
For R-HAM, this crossbar is voltage overscaled to 0.78 V
while the rest of components are operated at nominal 1 V.
However, for A-HAM the crossbar is operated at 1 V due to
its sensitivity to lower voltages while the LTA analog blocks
work at 1.8 V. The LTA blocks are designed considering 10%
process variations on threshold voltage and transistor size,
using 5000 Monte Carlo simulations.

C. Scalability of HAM

Here, we measure the energy, the search delay, and their
product to assess the scalability of the HAM designs for
various configurations of the dimension (D) and the number
of classes (C).

1) Dimensions: Table III lists the classification accuracy
for various D. This indicates the net effect of dimension
reduction on the classification accuracy when no approx-
imation techniques is applied. The three designs exactly
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exhibit the same classification accuracy for D=2,000 and
lower. However, for the higher dimensions A-HAM shows
slightly lower classification accuracy: 0.5% lower accuracy
with D=10,000. This lower accuracy of A-HAM is caused by
the precision of the LTA blocks that can detect a minimum
Hamming distance of 14 bits with D=10,000 (See. Figure 7).
This issue can potentially limits the scalability of A-HAM
for the larger dimensions discussed in Section IV-F.

The dimensionality of hypervectors has direct impact on
the search delay and the energy. Figure 9 shows the energy
consumption, the search delay, and the energy-delay product
of D-HAM, R-HAM and A-HAM when D changes from 512
to 10,000. There is no approximation and each dimension
results in its maximum accuracy listed in Table III. Our
result shows that the energy consumption of D-HAM and
R-HAM linearly increase with the number of dimensions.
Indeed, larger dimension in D-HAM and R-HAM slows
down the search operation because of the longer interconnect
size; the bit width of counters and comparators grows
logarithmically with the number of dimensions. In A-HAM,
the LTA block is the dominant term of energy consumption.
For each dimension, we set the number of stages and the
resolution of the LTA blocks that are shown in Figure 7.
A-HAM shows the slowest rate of increase in the energy
and the delay for the higher dimensionalities, because A-
HAM tunes its accuracy by solely changing the resolution
of the LTA blocks that does not require significant extra
hardware overhead. Our results show that by increasing the
dimensionality by 20×, the energy (or the delay) of the
HAM design is increased by: 8.3× (2.2×) in D-HAM, 8.2×
(2.0×) in R-HAM, and 1.9× (1.7×) in A-HAM.

We should note that a digital HD computing with
D=10,000 and without any approximation technique enables
53% energy saving compared to a conventional machine
learning method [5]. However the robustness can be weak-
ened against the approximation-induced errors by reducing
the dimensionality.

2) Number of Classes: Figure 10 shows the energy
consumption of the HAM designs with D=10,000 while
using different C. For each configuration, we generate C
random hypervectors that resemble the learned hypervectors
by having equal number of randomly places 0s and 1s. All
the HAM designs with the larger C require the larger input
buffers to distribute the input query hypervector among all
the classes at the same time that results in higher energy
consumption. D-HAM and R-HAM with the larger number
of classes require larger bitwise counters and comparators to
find the nearest distance among the classes. Comparing D-
HAM with R-HAM shows that D-HAM has higher energy
and delay for larger C since its bitwise comparisons are done
in the CAM array that dominates the energy consumption.
However, such CAM array in R-HAM consumes less energy
than its counters and comparators due to the lower switching
activity and supply voltage.

Increasing C has the maximum impact on the energy
and the delay of A-HAM compared to D-HAM and R-

HAM. In A-HAM the LTA blocks are the dominant term
of energy consumption. The number of LTA blocks and
the search delay of LTA structure increase linearly and
logarithmically with C. Therefore, the energy consumption
of A-HAM is significantly impacted by the number of
classes. By increasing C from 6 to 100, the energy (or the
delay) of the HAM design is increased by: 12.6× (3.5×)
in D-HAM, 11.4× (3.4×) in R-HAM, and 15.9× (4.4×) in
A-HAM.

D. Energy Saving
Figure 11 shows the energy-delay product of R-HAM and

A-HAM normalized to D-HAM for the errors in Hamming
distance. In D-HAM, the energy-delay improves linearly by
increasing the errors as D-HAM excludes more dimensions
during the distance calculation. The R-HAM shows a higher
rate in energy-delay saving compared to D-HAM thanks
to applying the voltage overscaling on more blocks. This
saving rate is faster for A-HAM by reducing the resolution
of the LTA blocks. Targeting the maximum (or the moderate)
classification accuracy, R-HAM achieves 7.3× (9.6×) and
A-HAM achieves 746× (1347×)lower energy-delay product
compared to D-HAM. Overall, A-HAM is highly amenable
to be used when a lower classification accuracy is required:
by switching from the maximum accuracy to the moderate
accuracy A-HAM achieves 2.4× lower energy-delay prod-
uct, while the R-HAM does it for 1.4×. Such improvement
in A-HAM is due to the faster search delay with the LTA
blocks with low bitwidth resolution. However, the search
latency in R-HAM does not change with lower accuracy
since the voltage overscaling can be solely applied to the
CAM blocks.

E. Area Comparison
The area comparison of D-HAM, R-HAM and A-HAM

using D=10,000 and C=100 is shown in Figure 12. D-HAM
consumes most of its area in the CAM array for the bit
level comparison; it is also penalized by its interconnect
complexity. The area of R-HAM is 1.4× lower than D-HAM
because of using high density memeristive elements in the
CAM design. However, R-HAM cannot fully utilize such
dense technology as it requires to insert digital counters
and comparator for every 4 bits block. A-HAM resolves
this issue by using the current-based searching with analog
circuitry that allows every CAM stage to include ≈700
memristive bits. Overall, A-HAM achieves 3× lower area
than D-HAM and its LTA blocks occupy 69% of the total
A-HAM area.

F. Limitations
In a nutshell, among the HAM designs, A-HAM exhibits

the best energy-delay scaling with both increasing the di-
mensionality (See Figure 9) and lowering the classification
accuracy (See Figure 11). A-HAM also surpasses other
designs in the area (See Figure 12). However, R-HAM shows
slightly lower rate of increasing energy-delay with increas-
ing the number of classes (See Figure 10). Nevertheless,
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Figure 9. Impact of scaling D in energy consumption (pJ), search delay (ns) and energy-delay product with C=21.
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Figure 10. Impact of scaling C in energy consumption (pJ), search delay (ns) and energy-delay product with D=10,000.
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Figure 11. Energy-delay of the HAMs with accuracy.

R-HAM cannot fully exploit the high density of memristive
elements since its digital counters and comparators have to
be interleaved among the 4 bits blocks of the crossbar; R-
HAM is also very sensitive to any voltage variation because
the crossbar is already voltage overscaled to 0.78 V to accept
1 bit mismatch among the 4 bits (See Figure 4(c)). In the
following, we assess the limitations of A-HAM.

In A-HAM, the LTA capability to detect the minimum
Hamming distance can be significantly affected by the vari-
ations in process and voltage. To assess such susceptibility,
we model the variations on the transistors length and the
threshold voltage using a Gaussian distribution with 3σ

of 0% to 35% of the absolute parameters value [29]; we
also consider 5% and 10% variation on the supply voltage
of the LTA blocks that reduces the supply voltage from

Figure 12. Area comparison between the HAMs.

the nominal 1.8 V to minimum of 1.71 V and 1.68 V,
respectively. Figure 13 shows that increasing the process
variations specially for the large voltage variations signifi-
cantly reduces the minimum detectable Hamming distance of
the LTA blocks. In the lower voltages, the process variation
has more destructive impact on the LTA detectable Hamming
distance compared to the nominal voltage. As shown, A-
HAM with the nominal supply voltage and more than 15%
process variation could degrade the classification accuracy
below the moderate level; this also holds for 5% (or 10%)
voltage variation combined with more than 10% (or 5%)
process variation. Considering the 35% process variation,
A-HAM with the nominal voltage, 5% and 10% voltage
variations achieves 94.3%, 92.1%, and 89.2% classification
accuracy, respectively. This might limit the usage of A-HAM
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Figure 13. Impact of process and voltage variations for the minimum
detectable Hamming distance in A-HAM.

for the smaller feature size or in conditions with low signal-
to-noise ratio.

V. CONCLUSION

HD computing is about manipulating and comparing hy-
pervectors stored in the associative memory. HD computing
exhibits a robust behavior with faulty components thanks
to its special brain-inspired properties: (pseudo)randomness
with i.i.d. components, high-dimensionality, and holo-
graphic representations. This robustness allows us to design
memory-centric architectures for efficient searches in the
high-dimensional space by combining approximate tech-
niques from three widely-used methodological design ap-
proaches. These HAM designs linearly scale with the hy-
pervector dimensions and number of classes: increasing the
dimensionality by a factor of 20 increases 1.9× the energy,
and 1.7× the delay of A-HAM; increasing the classes by a
factor of 16.6 increases 11.4× the energy, and 3.4× the delay
of R-HAM. Compared to D-HAM, A-HAM reduced the area
by 3× and significantly improve the energy-delay product
by 746× for the maximum 97.8% classification accuracy,
and 1347× for the moderate 94% accuracy. A-HAM is able
to maintain such efficiencies in the presence of 10% voltage
and 25% process variations.
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