CAUSE: Critical Application Usage-Aware
Memory System using Non-volatile Memory
for Mobile Devices

Yeseong Kim, Mohsen Imani, Shruti Patil and Tajana S. Rosing

Computer Science and Engineering
University of California, San Diego
Email: {yek048, moimani, patil, tajana} @ucsd.edu

Abstract—Mobile devices are severely limited in memory,
which affects critical user-experience metrics such as application
service time. Emerging non-volatile memory (NVM) technologies
such as STT-RAM and PCM are ideal candidates to provide
higher memory capacity with negligible energy overhead. How-
ever, existing memory management systems overlook mobile users
application usage which provides crucial cues for improving user
experience. In this paper, we propose CAUSE, a novel memory
system based on DRAM-NVM hybrid memory architecture.
CAUSE takes explicit account of the application usage patterns to
distinguish data criticality and identify suitable swap candidates.
We also devise NVM hardware design optimized for the access
characteristics of the swapped pages. We evaluate CAUSE on
a real Android smartphone and NVSim simulator using user
application usage logs. Our experimental results show that the
proposed technique achieves 32% faster launch time for mobile
applications while reducing energy cost by 90% and 44% on
average over non-optimized STT-RAM and PCM, respectively.

[. INTRODUCTION

Modern mobile devices are expected to provide fast pro-
cessing and near-instantaneous responses, however they op-
erate under severe resource constraints due to low area and
power budgets. In particular, DRAM-based main memory
capacities are limited in state-of-the-art mobile phones (e.g.,
1GB for iPhone 6). This limitation affects process service
times, ultimately leading to user-experience degradation. As
an example, in Android systems, mobile applications must
be terminated when available memory is insufficient. Prior
work [1] has observed that more than 15% of applications
must be relaunched due to limited memory, resulting in slow
application launching time. Solutions such as swap memory
have been used in traditional OSes, but have not yet fully
exploited in mobile systems due to slow speeds and low
endurance of eMMC flash memory [3]. As memory demands
of mobile applications continue to grow, support for larger
memories with a low energy overhead is an important design
requirement that affects the quality of user experience.

Non-Volatile Memory (NVM) technologies, such as Phase
Change Memory (PCM) and Spin-Torque Transfer RAM (STT-
RAM) are ideal candidates for dense, low-power mobile sys-
tems, since they can provide large memory space at a small
energy cost [13], [14]. NVMs consume near-zero leakage
power due to their non-volatility. While STT-RAMs offer

978-1-4673-8388-2/15/$31.00 ©2015 IEEE

comparable density and read performance, PCMs are 2-4X
denser than DRAM [13]. However, both NVMs show ex-
tremely low write performance efficiency [8], making drop-in
replacement of NVMs into the memory hierarchy challenging.
On the other hand, NVMs have been shown to be promising
candidates as swap memory blocks [3]. The swap functionality
provides extended memory space as a backing storage by
migrating (i.e. swapping out) recently-unused memory data
to the swap memory area. While DRAM memory services
most memory requests from the processor, NVMs provide
augmented memory area with comparable read latencies for
swapped-out data.

However, current swap management techniques do not
consider application usage of real users. For example, the
present swap policy cannot distinguish mobile applications
launched specifically by the user among all running processes.
Agnostic of applications of interest to the user, the swap policy
treats pages from both foreground and background applications
uniformly. This leads to frequent swapping out of critical pages
from foreground interactive applications, whose processing
time is paramount for user experience. Intuitively, in order
to provide more intelligent memory management, mobile sys-
tems must consider the real users’ application usage pattern.
In this paper, we propose Critical Application Usage-aware
Swap Enhanced memory system or CAUSE, that efficiently
exploits application usage patterns in conjunction with NVM-
based swap memory to achieve higher user experience with
low energy overheads. Our approach utilizes the NVM as
an extension of DRAM, and intelligently decides when and
which pages should be migrated into the NVM by tapping
into usage characteristics. At the high-level, CAUSE identifies
critical memory pages based on application usage history.
Our swap policy manages these pages so as to reduce their
probability of being swapped-out. This allows pages from
applications deemed as non-critical for user experience to be-
come more suitable swap candidates, thereby reducing frequent
app termination for applications of interest. On the hardware
side, we propose a dual-partitioned NVM swap memory. We
optimize the partitions for the access patterns expected for the
swapped out pages. We evaluate NVM-based swap memory
with both PCM and STT-RAM technologies to support the
application-aware data migration with marginal power cost.
Our experiments are conducted on the Qualcomm MDP8660

smartphone [22] using actual application usage traces. The
results show that the proposed memory management technique
can save 90% and 44% of memory energy consumption
over non-optimized STT-RAM and PCM, respectively, while
providing better application launch time by 33%.

II. RELATED WORK

Some prior efforts have leveraged non-volatile memories
in mobile devices to address energy challenges. The memory
design in [3], [4] shows that mobile device energy can be
reduced by using NVM as the swap area. The authors analyze
the increase in page accesses when the swap functionality
is enabled, and compute the energy benefit when the swap
area is running on the NVM. However, issues due to page
migration are not addressed. Similar investigations which
exploit NVM techology to build a hybrid memory system
were proposed in [5], [6], however they didn’t consider how
such configurations are related to user experience in smart
devices. In contrast to those work, our scheme facilitates user-
aware page migration to provide better user experience. Chen
et al. [9] propose a unified NVM and NAND flash memory
architecture for mobile devices. Based on the observation that
mobile application usage exhibits unique file access pattern in
the history, files expected to be used in the near future are
migrated from NAND Flash to emerging NVM such as STT-
RAM and PCM. However, emerging NVMs provide orders of
magnitude higher performance compared to NAND Flash [17].
Thus, NVM-based swap area can react to memory accesses at
speeds comparable to DRAM. Therefore, CAUSE uses NVM
as a backing storage for main memory instead of the NAND
Flash memory.

Prior studies have also shown that user experience on
mobile devices suffers due to the limited memory size. Wook
et al. [1] observe that, in current Android platforms, many
applications must be terminated and relaunched, resulting in
poor user experience. Their technique uses a prediction model
that determines which applications will be used in the near
future based on the application usage pattern, and proposes
an application eviction management policy that can reduce
application restarting ratios. Yan et al. [2] also proposes a
predictive application pre-launching technique that leverages
user’s context behavior for application usage patterns to pro-
vide better application launching time. Our proposed design is
different from these efforts in that our approach exploits the
fast access times provided by NVMs to address these issues.
Kim et al. [7] propose a technique that reduces application
launching time by storing frequently accessed applications and
libraries to NVMs for startup. However, the proposed design
is fundemantally different in that the CAUSE technique en-
ables the swap management and avoids unexpected application
process terminations, resulting in preserving application state,
such as loaded webpages and played game levels, as well as
reducing launching time. Furthermore, CAUSE also identifies
criticality of different applications by taking advantages of
users’ application usage pattern.

III. CRITICAL APPLICATION USAGE-AWARE SWAP

MEMORY ARCHITECTURE

CAUSE proposes a novel swap policy in the swap man-
agement system, and NVM design for its hardware support.

691

Mobile Software Platform

CAUSE Daemon
(Linux Kernel)

App Management Service

App information
(on Mobile Framework)

Software

Selective page migrations

NVMaormant

NVMuon-dormant
Du'ec(read
& C OWS

Last-level cache (on CPU)

Hardware

l Pages of foreground apps § Inactive (dormant) pages

Pages of background

(non-dormant) apps |:| Empty area

Fig. 1. An architectural overview of CAUSE

In this section, we first explain how the existing swap policy
migrates the memory data to the dedicated swap area, and then,
describe the CAUSE design in two parts from the software and
hardware perspective.

A. Existing swap memory management

The default swap memory management utilizes DRAM-
based main memory and a dedicated swap memory area,
typically located in the disk. The memory space consists of
a number of fixed-size memory units, or pages, whose size is
typically 4KB in modern Linux systems. Pages are migrated
between DRAM and swap memory if the available main
memory is insufficient. The swap memory management utilizes
a swap policy to determine which pages should be migrated
into the swap area.

We briefly describe the default swap policy here. In Linux
systems, memory management framework exploits a pseudo
LRU-based mechanism using two page lists, called the active
list and the inactive list. The pages of the inactive list are
considered as the candidates to be swapped out. If a page in
the inactive list is accessed, the page is moved to the active
list by assuming that the page is likely to be used in the near
future. On the other hand, when the inactive list becomes too
small compared to the active list, the pages that have been least
recently added to the active list are moved to the inactive list,
balancing the two lists. When a new application is launched, if
the current available memory is insufficient, the swap policy
selects the pages of the inactive list to be evicted from the
main memory in order of least-recently-added page.

A major limitation of this policy is that it does not consider
different user experience-related requirements of pages. For ex-
ample, in the Android platform, a large number of background
service and widget applications run periodically. The pages
accessed by these applications are moved to the active list
since they appear as recently accessed pages. This interferes
with the recently used pages from foreground applications
actively being used by the user, which hold higher impact for
user experience compared to background applications. As a
result, pages from foreground applications become the victim
pages to free memory space for new incoming pages. If

the swap functionality is not activated in Android platform,
some applications are terminated even though they have been
recently used in foreground [3], known as the low memory
killer mechanism. On the other hand, even if swap policy
is enabled, the systems are likely to swap out recent pages
belonging to foreground applications.

B. Overview of CAUSE

The design goal of the proposed CAUSE is to efficiently
exploit the swap functionality in the mobile device by consid-
ering the user’s actual application usage pattern. An important
design issue is that information about application usage is
typically available at the application layer, i.e. in the high-level
system software, while the swap management and hardware
support is performed at the low-level, i.e. kernel or hardware
level. To address this, we take a cross-layer approach in the
design of CAUSE.

Figure 1 shows an architectural overview of CAUSE. The
application (or ‘app’) management service distinguishes the
applications that have been recently launched by users from
the other running applications. In the Android framework,
the higher layer system service such as the Activity Manager
can recognize applications launched by users. CAUSE utilizes
this information to track the applications recently launched
in foreground. Then, the app management service sends the
application information, including process IDs and types of
the running applications to the CAUSE daemon in the Linux
kernel, to inform the daemon of the applications that are likely
to be used by the user in the near future. On the other hand,
memory pages related to not-recently-launched applications
are deemed to be non-critical to the user experience, i.e.
their application launch time and process service time are
not required to be optimized. Therefore, the CAUSE daemon
migrates these pages into the inactive page list, marking them
as candidates to be swapped out to NVM. This procedure is
elaborated in Section 3.3.

Our swap policy migrates pages to the NVM when main
memory must be freed for other incoming pages. We consider
two possible types for each page that is swapped to the NVM:
dormant and non-dormant. Dormant pages are those that are
swapped out by the default swap policy because they are
indeed not recently used. In contrast, the non-dormant pages
belong to background and widget applications, and are likely
to be accessed soon (or periodically) in the future. Thus,
dormant and non-dormant pages show significantly different
characteristics in terms of the page access pattern. To cater
to these two types of access patterns, we partition the swap
memory in two parts, NVMdormant and NVMnon-dormant,
each designed with a different optimization goal. We describe
this hardware design in Section 3.4. When a read request for a
swapped page is initiated by the CPU, this is serviced directly
from the swap area without copying memory to the DRAM.
This is also called direct read and copy-on-write swap-out
(COWS) mechanism, described in [4]. Since the read latency
of optimized NVM is close to that of DRAM, this provides fast
access to the swapped out pages, alleviating the performance
loss due to main memory capacity limitation.

692

Re-Launching Interval Ratio (CDF)
s o © & = o o o
S8 2 & &8 8 &8 &8

e

10'
Time (Minute)

°

1 q

10

Fig. 2.

Application relaunching pattern for 10 users

C. Software design of CAUSE

The software component of CAUSE handles swap page
migration between DRAM to dual-partitioned NVM, based on
application types. CAUSE seeks to retain pages from applica-
tions launched by users into DRAM for as long as possible
since they are highly likely to be relaunched. Whenever an
application is started or stopped, the app management service
informs the Linux kernel of the list of process IDs of running
applications and their types. Applications are of the type criti-
cal or non-critical. The critical type means the apps which are
likely to be used by users in the near future. The non-critical
apps are assumed not to be used by user, but their pages might
be accessed by the background and widget applications. The
proposed CAUSE identifies the two application types based on
the user’s application launching pattern. In order to understand
application launching patterns, we analyzed the application
usage logs which were collected from a user study [1] that
monitored when mobile applications were launched by the
user. Based on the collected logs for two weeks from 10
users, we investigated when each application was relaunched
as foreground applications by the user. We define a metric
for application relaunches, called re-launching interval which
refers the time interval between two application launches for a
certain application. For example, if a browser application was
executed at T1 and the application was re-launched at T2, the
time interval is computed by (T2-T1). Figure 2 summarizes
the analysis result of re-launching intervals in a CDF graph.
The results show that, once an application is launched, the
application is highly likely to be used again in the near future.
For example, 80% of applications were reused by the user
within 100 minutes. Based on this result, we assume that the
applications which are not used within 100 minutes will be not
used again in the near future. We classify such applications
as non-critical applications. Based on this information, the
CAUSE daemon decides whether a page should be a swap
candidate.

The CAUSE daemon is responsible for two functions: inac-
tive list management and freeing memory pages. Algorithm 1
and 2 describes how these two functions enable swap page
migration in the kernel layer. Algorithm 1 is triggered when
new application information is sent by the app management
service. For each new application, it first checks whether the

Algorithm 1: Inactive list management

// Apst 1s the list of applications
// A is an application of Ay
for each A in Aj;s; do
if isNonCritical(A) then
// P is a page of A
for each P of A do
if P in active_list then
| deactive_page(P)
end
end
end

o 0N AN R W N

—
-

end

—
(5]

application is classified as non-critical application (Line 3 to
4). Since these applications do not significantly affect to the
user experience, their pages are moved to the inactive list to
provide more memory space to critical applications (Line 6 to
8).

Algorithm 2: Freeing memory pages

// P is a page of inactive list
for each P in inactive_list do
if isPageOfNonCritical(P) then
‘ SU}CLp_OUt_p@g@(P, NVMnondormant)
else
‘ swap_out_page(P, NVMdo’r'munt)
end
if isMemorySufficient() or isSwapFull() then
| Break
end

D-T-CREEN B N N S

end

if — isMemorySufficient() then

// Run the low memory killer
do_shinker()

end

When the system needs to secure more free memory,
Algorithm 2 is activated on top of the existing swap policy.
Since the CAUSE architecture provides two types of NVM
swap regions, this algorithm also decides where the page
should reside in the swap memory, based on the application
type that contains the swapped-out page (Line 3 to 7). This
procedure executes until enough memory has been freed, or
until the swap area is full (Line 8 to 10). If the system still
needs more free memory, it executes the low memory killer
implemented as part of the original system.

D. Hardware design of CAUSE

CAUSE is supported by NVM swap memory composed
of emerging technologies such as STT-RAM or PCM. These
are byte-addressable, low power, and fast access memories
compared to the non-volatile NAND-Flash technology. How-
ever, the two technologies differ in their endurance'. STT-
RAM can endure 10'° — 10'® write requests, which is orders
of magnitude higher than PCM whose endurance is around

The number of times a memory cell can be rewritten

693

09
08
0.7
0.6
0.5
0.4
03
0.2
0.1

Normalized Retention time

10 15 20 25 30
Arearelaxation (%)

Fig. 3. MTIJ retention time with reduced cell area

105—10° [13], [14]. In this paper, we evaluate the performance
and power benefits of both candidate technologies as NVM
swap memories.

Several power and performance optimizations are possible
for these memories when architecturally acting as NVM swap
area alongside the main memory. In particular, we perform
row buffer optimization with both PCM and STT-RAM to
improve the access latency of the swap region. In addition,
STT-RAM are amenable to other optimization opportunities
such as retention time relaxation as described below.

Retention time optimization Data retention time is a
well-known metric of how long a non-volatile memory cell
can maintain the written bit without unintended bit-flips. The
retention time of STT-RAM cell, more commonly known as
Magnetic Tunnel Junction (MTJ) is proportional to its thermal
stability factor. The more thermally stable an MTJ is, the
longer it retains written data. The thermal stability factor is
proportional to the volume of a MTJ cell [?], [15]. With
reduced planar-area of free layer or the thickness of the MT]J,
the retention time decreases dramatically. Trading off retention
time by reducing area (also called as ‘relaxed STT-RAM’ [15])
is advantageous for power and performance. In particular,
reduced retention time lowers both, the write current required
in MTJ and the write latency.

Relaxed STT-RAM can be nearly as fast as DRAM in
write performance while saving a significant amount of write
energy [15]. Figure 3 shows data retention time for varying
degrees of area relaxation, compared to an MTJ designed for
retention time of ten years [19]. This relaxation can either
decrease the MTJ write current by 65% while maintaining the
same write latency, or improve the write latency by 83% for
the same write current. In this paper, we decrease the free
layer area of MTJ by 20%, reducing the data retention time
of MTJ from ten years to one month. If higher retention time
is required, a refresh scheme similar to DRAM can be used.

Row buffer optimization In NVM structures, row buffers
have been proposed as temporary storage to speed up the
write/read operations in NVMs [16]. The row buffers are
composed of DRAM cells and can be optimized for area or
latency [18], trading-off leakage and latency characteristics
of the swap memory. In Table 1 and 2, we illustrate these
improvements with respect to both types of optimizations for

Main Memory
(DRAM)

DRAM Buffer DRAM Buffer

L 2 L 2
NVMdormant NVMnon-dormant

Relaxed NVM Relaxed NVM

Eneroy Optimized Latency Optimized

Fig. 4. Hardware architecture design of CAUSE

STT-RAM based swap memory of varying sizes. Results are
obtained using the NVSIM tool [18]. The latency optimization
significantly decreases the write and read latencies, but has
area and leakage power overhead. On the other hand, area
optimization reduces the area and leakage power of buffer with
huge overhead on read and write latency. Thus, performance-
optimized buffers are suitable for frequently accessed memory
blocks where latencies are important, while area-optimized
buffers are more suitable for memory blocks with low access
activity.

As explained in Section 3.2, swapped pages are of two
types, dormant or non-dormant depending on the cause of
swap. The two types are characterized by diverse access
patterns, either frequent read/writes for non-dormant pages,
or few to none read/write requests for dormant pages. Thus,
the two types of pages benefit from memory optimized for
their specific characteristics. In particular, we optimize the
non-dormant region (NVMnon-dormant) for performance, and
the dormant region (NVMdormant) for power and area. In
CAUSE, we achieve this optimization by tuning the row buffer
size and the type of optimization applied to the buffers. For
example, in 32MB STT-RAM memory, latency optimized row
buffer uses 1KB buffer to achieve low latencies, while in
dormant region, the area optimization decreases the size of
row buffer to 64B which results in 1.7X energy improvement.
This improvement is up to 3X for PCM. Similar results were
obtained in [16]. Figure 4 shows the high-level architecture
of the NVM swap memory. For non-dormant type pages,
we expect frequent, periodic access requests, therefore, non-
dormant is designed with high speed, low access energy and
large row buffer size to achieve high performance. In contrast,
NVMdormant is expected to contain inactive pages. Thus,
we focus on optimizing the memory area based on power
consumption. In our experiments, the ratio of non-dormant
pages over the total migrated pages was found to be 40% or
less for all user logs in our experiment. To ensure sufficient
memory for non-dormant pages, we size the two swap regions
equally. If any region becomes full, the incoming page is
directed to the second region. If both regions are full, then
applications are terminated as in the original scheme.

TABLE L. STT-RAM CHARACTERISTICS WITH AREA-OPTIMIZED

BUFFER DESIGN

STT-RAM
32MB 64MB 128MB 256MB
Read Latency 28.702ns 46.241ns 67.597ns 118.151ns
write latency 26.45ns 67.630ns 73.04ns 184.81ns
Read Energy 50.742pJ 84.435p] 126.774pJ 273.936pJ
Write Energy 83.327p] 134.052pJ 229.492p] 493.931pJ
Leakage Power | 29.175uW 43.15uW 53.65uW 84.162uW

TABLE II. STT-RAM CHARACTERISTICS WITH LATENCY-OPTIMIZED
BUFFER DESIGN
STT-RAM

32MB 64MB 128MB 256MB

Read Latency 9.045ns 22.423ns 24.775ns 79.058ns
write latency 18.932 ns 57.056ns 61.590ns 226.668ns
Read Energy 53.183pJ 86.024pJ 129.338pJ 278.472p)
Write Energy 84.462pJ 136.637pJ 234.968pJ 500.058pJ
Leakage Power | 147.592uW 295.561uW 310.482uW 593.722uW

IV. EXPERIMENT RESULT
A. Experimental setup

We implement the CAUSE system on a Qualcomm
MSMS8660 smartphone running Android 4.1 with Linux kernel
3.0.6. Since NVM memory chips are not readily available in
the market, we partitioned a main memory area to be used
as the swap area using ram disk [20]. The size of the main
memory on the device is 1GB. We partition this memory
so that we have 768MB of effective main memory, while
the remaining is used for NVM simulation. The NVM is
mounted as a block device and simulated with varying memory
sizes (up to 256MB), which include the two regions. We
collected detailed memory access traces of the swap area
using blktrace [21]. We then evaluate latency and power
consumption of the collected memory trace using NVSim. In
the experiment, we executed a one-day application launch log,
out of two weeks, from each user by employing a custom
application usage replayer environment used in [1]. The launch
logs include 20 Android applications, which cover the number
and types of applications of the user logs, such as Facebook,
Browser, News, Messenger and Camera, representing realistic
application workloads. To account for the effect of background
services and widget activities, we also activated custom back-
ground service applications. The custom application replayer
launched the applications and background services according
to the actual launching sequences of the collected 10 user logs.
However, an exact execution of the one-day logs require long
simulation times. To reduce experiment times, we scaled down
the running period of each log so that all of them can be
executed within approximately 20 minutes. Since application
launching is the dominant factor that affects the swap policy
or the application termination mechanism, we could faithfully
evaluate the logs even with scaled down execution times.

B. Energy saving

The main goal of the proposed CAUSE is to provide higher
memory capacity without significant energy cost. In order to
understand how much energy is required to employ the CAUSE
design, we evaluated the energy consumption of different
memory technologies while reproducing the logs. Figure 4

B 64MB [128MB 256MB
6000 30000
4500 22500
g
§ 3000 15000
2
]
1500 7500
o0 —=miill
STTRAM PCRAM STTRAM PCRAM DRAM
(CAUSE) (CAUSE) (NoOpt) (NoOpt)
Fig. 5. Energy consumption of CAUSE

presents the average energy consumption results for all 10
users. The energy consumption of the DRAM is separately
plotted on a different scale. The result shows that the energy
cost to employ the CAUSE systems is very marginal. For
example, we can observe that with 64MB PCM, CAUSE uses
10.2X lower energy compared to the DRAM-based design.
This power saving primially comes from the lower static
power offered by NVM technologies. In addition, the result
shows the benefit of the hardware optimization of the CAUSE
systems. For example, for the 64MB case, the CAUSE shows
energy saving by about 90% and 44%, for the STT-RAM and
PCM case respectively. This result shows that our hardware
design and optimization strategy is effective in achieving a
high energy efficiency. By considering access characteristics
for different applications, the CAUSE design could further
improve the energy efficiency compared to the exsiting swap
apporaches based on non-optimized NVMs, and also allow
larger memory space for the user-related applications.

C. Launch experience improvement

Another goal of CAUSE is to provide better user ex-
perience by allowing more foreground applications of in-
terest to reside in main memory. This reduces the number
of applications that are killed (and subsequently relaunched)
due to the limited memory size. This, in turn, reduces the
launch time of applications when they are recalled as active
foreground applications, improving the user experience. In
order to evaluate the improvements in launch time as well as
the reduced restart count, we esimated the application launch
time based on the DRAM memory available in the Android
platform. Figure 6 shows the percentage improvement enabled
by CAUSE in the application restart count and the launch
time, using the default kernel, which does not use the swap
policy, as the baseline. The result shows that, on average,
23.4% of application relaunches can be reduced by allowing
larger memory space for the foreground applications. The
improvement results in shorter application launch delays. As
shown in the result, CAUSE can improve the launching time
by 32% on average. As the NVM technology matures with
respect to access time, we believe that the proposed CAUSE
system can provide higher user experience.

D. Background page balancing

Lastly, we evaluate the effectiveness of our software mi-
gration policy. The goal of the foreground application-aware

695

I mproved Restart Count [l Improved Launching Time

.
=
2 &
ES %
E &
35
£s
Q
gg o
[
C
Ba
&
0
User 1 User 2 User3 User 4 User 5 Geo.Mean
(10 Users)
Fig. 6. Application launching experience improvement
I cAUSE | Baseline
40
&
58
2 >
- Q@
S a
S m
e
5 5
S s
@ 8
I T
g 1
]
E o
2
= 0
User 1 User 2 User 3 User 4 User 5 Geo.Mean
(10 Users)

Fig. 7. Background page balancing

migration policy is to bias migration towards non-critical
applications. Therefore, we analyze the number of background
pages that are migrated by CAUSE compared to the default
swap policy which does not consider criticality of applications.
As shown in Figure 7, CAUSE migrated 23% more pages of
background applications over the default policy. The results
show that, since more number of the pages of background
applications are moved to the swap area, CAUSE can guarantee
more space to the foreground applications, resulting in better
process service time for the users.

V. CONCLUSION

In this paper, we proposed a novel memory systems for
smart devices, called CAUSE, which leverages NVMs for the
swap functionality. By considering application usage pattern of
users, CAUSE intelligently manages page migration between
main memory and swap memory, in order to provide better user
experience with respect to application launch time. In addition,
the CAUSE system carefully optimizes NVM hardware to
incorporate different requirements of migrated pages. We eval-
uated the CAUSE system over different memory technologies
using real user traces on a real Android smartphone device. The
CAUSE approach can be extended and improved in various
ways. From a software perspective, we believe that accurate
application launching prediction techniques based on the user
context can help to make better decisions about which pages
are migrated. Our future work also includes exploiting and
optimizing NVMs for memory management in other units in
the mobile SoC, such as the display.

ACKNOWLEDGMENT

This work has been supported by National Science Foun-

dation(NSF) SHF grant 1218666.

(11

(2]

(31

(41

(31

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Song, W., Kim, Y., Kim, H., Lim, J., and Kim, J., “Personalized op-
timization for android smartphones,” ACM Transactions on Embedded
Computing Systems (TECS), 2014, 13(2s), 60.

Yan, T., Chu, D., Ganesan, D., Kansal, A., and Liu, J., “Fast app launch-
ing for mobile devices using predictive user context,” in Proceedings of
the 10th international conference on Mobile systems, applications, and
services (pp. 113-126), 2012, ACM.

Zhong, K., Zhu, X., Wang, T., Zhang, D., Luo, X., Liu, D., and
Sha, E. H. M., “DR. Swap: energy-efficient paging for smartphones,”
in Proceedings of the 2014 international symposium on Low power
electronics and design (pp. 81-86), 2014, ACM.

Zhong, K., Wang, T., Zhu, X., Long, L., Liu, D., Liu, W., and Sha, E.
H., “Building high-performance smartphones via non-volatile memory:
The swap approach,” In Embedded Software (EMSOFT), International
Conference on), 2014, pp. 1-10, IEEE.

Duan, R., Bi, M., and Gniady, C. “Exploring memory energy optimiza-
tions in smartphones,” In Green Computing Conference and Workshops
(IGCC), 2011, pp. 1-8, IEEE.

Abe, K., Noguchi, H., Kitagawa, E., Shimomura, N., Ito, J., and Fujita,
S., “Novel hybrid DRAM/MRAM design for reducing power of high
performance mobile CPU,” In Electron Devices Meeting (IEDM), 2012,
pp. 10-5, IEEE.

Kim, H., Lim, H., Manatunga, D., Kim, H., and Park, G. H., “Ac-
celerating Application Start-up with Nonvolatile Memory in Android
Systems,” Micro, IEEE, 2015, 35(1), 15-25.

Lee, B. C., Ipek, E., Mutlu, O., and Burger, D., “Architecting phase
change memory as a scalable dram alternative,” ACM SIGARCH
Computer Architecture News, 2009, 37(3), 2-13.

Chen, R., Wang, Y., Hu, J., Liu, D., Shao, Z., Guan, Y., Unified Non-
Volatile Memory and NAND Flash Memory Architecture in Smart-
phones. in ASP-DAC, 2015, ACM.

Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, et al., “Spin-
transfer torque switching in magnetic tunnel junctions and spin-transfer
torque random access memory,” Journal of Physics: Condensed Matter,
vol. 19, p. 165209, 2007.

A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, et al.,
“Cache revive: architecting volatile STT-RAM caches for enhanced
performance in CMPs,” in Proceedings of the 49th Annual Design
Automation Conference, 2012, pp. 243-252.

S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, et al., “Highly
manufacturable high density phase change memory of 64Mb and
beyond,” in Electron Devices Meeting, 2004. IEDM Technical Digest.
IEEE International, 2004, pp. 907-910.

Bheda, Rishiraj A., et al., “Energy efficient phase change memory based
main memory for future high performance systems,” in Proceedings of
Green Computing Conference and Workshops (IGCC), 2011 Interna-
tional, IEEE, 2011.

Kultursay, Emre, et al., “Evaluating STT-RAM as an energy-efficient
main memory alternative,” in Proceedings of Performance Analysis of
Systems and Software (ISPASS), 2013 IEEE International Symposium
on., IEEE, 2013.

C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R.
Stan, “Relaxing non-volatility for fast and energy-efficient STT-RAM
caches,” in Proceedings of High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, pp. 50-61, 2011.

Meza, Justin, Jing Li, and Onur Mutlu., “A case for small row buffers
in non-volatile main memories,” in Proceedings of Computer Design
(ICCD), 2012 IEEE 30th International Conference on., IEEE, 2012.

Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi.,
“Operating system support for NVM+DRAM hybrid main memoryr,” in

Proceedings of the 12th conference on Hot topics in operating systems
(HotOS’09), 2009, USENIX Association, Berkeley, CA, USA, 14-14.

696

[18]

[19]

[20]
[21]

[22]

Dong, Xiangyu, et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging nonvolatile memory,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 2012, 994-
1007.

Xuanyao Fong, Sri Harsha Choday, Panagopoulos Georgios, Charles
Augustine, Kaushik Roy, “SPICE Models for Magnetic Tunnel Junc-
tions Based on Monodomain Approximation,” NanoHub, 2013

Linux ram disk overview, http://www.ibm.com/developerworks/library/l-
initrd/

blktrace User Guide, http://www.cse.unsw.edu.au/~aaronc/iosched/doc/
blktrace.html

Qualcomm MSMB8660, https://developer.qualcomm.com/mobile-
development/development-devices-boards/mobile-development-
devices/snapdragon-mdp-legacy-devices

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryList_V1
 qi2base

