CAUSE: Critical Application Usage-Aware Memory System using Non-volatile Memory for Mobile Devices

Yeseong Kim, Mohsen Imani, Shruti Patil and Tajana S. Rosing

Mohsen Imani

UC San Diego Department of Computer Science and Engineering

November 2015, ICCAD Conference

© see

User Experience in Mobile

Launching Process (Angry Birds Rio)

Mobile, Applications and DRAM

Limited DRAM capacity

- State of the art mobile phones e.g 1G in iphone 6
- 15% of applications close due to limited memory
- Re-launching needs 10X slower [Wook et al. IEEE TECS14]

• Problem caused by limited main memory

- Application termination
- Launch time + energy overhead
- Process service times

System Energy Efficiency Lab

seelab.ucsd.edu

User experience degradation

Flash

Swap and Mobile Device

- Swap Memory with Flash
 - Energy
 - Latency
 - Endurance of eMMC flash

- Emerging NVM technology
 - Efficient read operation
 - Denser than DRAM (PCM ~2-4X)
 - Low write performance!

Non-volatile Memory

Solution?

• STT-RAM

- Low leakage power
- High endurance $(10^{10}-10^{15})$
- Very fast in read
- Write latency and energy!
- Low scalability

• PCM

- Low leakage power
- Very high density
- Scalable
- Write latency and energy!
- Low endurance (10^6-10^7)

Features	SRAM	eDRAM	STT-RAM	PCRAM
Density	Low	High	High	Very high
Speed	Very Fast	Fast	Fast for read; slow for write	Slow for read; very slow for write
Dynamic Power	Low	Medium	Low for read; very high for write	Medium for read; high for write
Leakage Power	High	Medium	Low	Low
Non-volatility	No	No	Yes	Yes

Challenges of NVM Based Swap Memory

• Software:

How to select apps which are good to be swapped?

• Apps have different launching usage trends, resulting in distinct levels of criticality for user experience

• Hardware:

How to design NVMs for swap?

• Apps have different access characteristics according to their status, e.g., foreground app and background service

CAUSE

- Critical Application Usage-Aware Memory System
 - Fast app launch: Better user experience!
 - Better process service time: More memory space for foreground apps

Memory Systems with NVM

• App management service:

- Recognizes applications launched by users
- Tracks the applications recently launched in foreground
- Sends the application information that is likely to be used in near future

• Page characteristics:

- Dormant:
 - Foreground applications
 - Indeed not recently used
- Non-dormant:
 - Likely to be accessed soon or periodically
 - Background applications and widget

Software:

Application Launching Usage Trend

- Collected logs for two weeks from 10 users
- **Re-launching interval:** the time interval between two application launches for a certain application.
- 80% of applications were reused within 100 minutes!

System Energy Efficiency Lab seelab.ucsd.edu

Active List Management

• Linux policy: balancing the number of active and inactive pages

Active List

CAUSE Management Policy

Freeing memory pages Active List

Inactive List

Hardware: Buffer Optimization

Retention Relaxation

• **STT-RAM retention** [Smullen et al, HPCA 2011]

- 20% MTJ area relaxation
- 83% write latency improvement
- Retention time from 20 years to 1 month
- Possibility of refresh

Experimental Setup

- Qualcomm MSM8660 smartphone
 - Running Android 4.1 with Linux kernel 3.0.6
 - 1GB Main memory; 768MB DRAM; 64KB-256KB NVM
- HSPICE for circuit level simulation
 - Retention time relaxation
 - Circuit level optimization
- NVsim & NVmain simulators for energy estimation
 - DRAM buffer
 - Buffer design
- 10 users launch 20 apps for 2 weeks
 - Scale down the executed time to 20 mins

CAUSE Energy Consumption

- Comparison of energy consumption with different memory technologies
 - 90% and 44% energy savings for STT-RAM and PCM

Launch Experience

- 32% launching time speed up
 - Better user experience 😳

Background Page Balancing

- 23% more background page migration
 - Provides space for foreground applications
 - Better process service time 😇

Summary

- Addressed limited main memory capacity of mobile devices
- Proposed new swap architecture to save the inactive pages based on applications and users
- Proposed & optimized dormant and non-dormant memory components for background and foreground applications
- 23% more background migrations + better process service time
- 32% launching time speed up + better user experience