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Abstract—In this paper, we propose VoiceHD, a novel speech
recognition technique based on brain-inspired hyperdimensional
(HD) computing. VoiceHD maps preprocessed voice signals in the
frequency domain to random hypervectors and combines them
to compute a hypervector (as learned patterns) representing each
class. During inference, VoiceHD similarly computes a query
hypervector; the classification task is done by checking the
similarity of the query hypervector with all learned hypervectors
and finding a class with the highest similarity. We further extend
VoiceHD to VoiceHD+NN that uses a neural network with a single
small hidden layer to improve the similarity measures. This neu-
ral network is a small block directly operating on the similarity
outputs of VoiceHD to slightly improve the classification accuracy.
We evaluate efficiency of VoiceHD and VoiceHD+NN compared to
a deep neural network with three large hidden layers over Isolet
spoken letter dataset. Our benchmarking results on CPU show
that VoiceHD and VoiceHD+NN provide 11.9× and 8.5× higher
energy efficiency, 5.3× and 4.0× faster testing time, and 4.6× and
2.9× faster training time compared to the deep neural network,
while providing marginally better classification accuracy.

I. INTRODUCTION

The majority of Internet of Things (IoT) devices today tend
to think of speech recognition being within the cloud. This is
mainly because of limited resources and battery capacity of
these small devices which make them unable to run complex
speech recognition algorithms. To enable efficient on-device
learning major algorithmic and architectural improvements are
required.

Neural Networks (NN), in particular deep NN, have been
widely used for speech recognition [1], [2]. However, such
deep networks are computationally expensive especially in
the training mode with iterative gradient decent. Among
brain-inspired computing paradigms, hyperdimensional (HD)
computing [3] is founded on the mathematical properties of
high-dimensional spaces and offers a promising new avenue
to enable efficient on-chip learning [4], [5]. HD computing
builds based on a well-defined set of arithmetic operations
and provides a complete computational paradigm for learn-
ing problems. Examples include analogy-based reasoning [6],
language recognition [7], [8], [9], text classification [10],
spoken word classification [11], biosignal electromyography
processing [12], brain-computer interfaces [13], and prediction
from multimodal sensor fusion [14], [15]. In this work, we
further extend the application of HD computing for fast and
efficient speech recognition.

We propose VoiceHD, a hardware-friendly and efficient
speech recognition technique using HD computing. VoiceHD
maps input voice signals in the frequency domain to hyper-
vectors. It assigns each frequency bin to a channel with a
unique identification that is mapped to a random hypervector.
Depending on distribution of values over the frequency bins,
an encoder generates a prototype hypervector representing
the class of interest. At the end of training mode, a set of
such prototype hypervectors is produced and will be stored as
learned patterns. VoiceHD uses the same encoder during the
test mode: it generates a query hypervector from unseen input
voice and then classifies it to one of the learned patterns with
highest similarity.

We further extend VoiceHD to VoiceHD+NN that uses a
neural network with a single small hidden layer to improve
the resolution of similarity measures. We evaluate efficiency of
VoiceHD and VoiceHD+NN over Isolet [16], a popular speech
recognition dataset which targets classifying the spoken letter
of 150 persons among 26 English alphabets. Our results show
that during test on CPU, VoiceHD and VoiceHD+NN provide
11.9× and 8.5× higher energy efficiency, and 5.3× and 4.0×
faster execution compared to a pure deep neural network with
three large hidden layers, while providing marginally better
accuracy. Moreover, VoiceHD and VoiceHD+NN are trained
4.6× and 2.9× faster than the deep neural network on CPU.

II. BACKGROUND AND RELATED WORK

A. Speech Recognition

Neural networks (NNs) combine with hidden Markov mod-
els have a long history in speech recognition [17], [18].
Deep neural networks have also been recently used for highly
accurate speech recognition [1], [2]. Prior work tried to
accelerate NNs on GPUs [19], [20], FPGAs [21], [22], and
ASICs [23], [24]. However, NNs are still expensive in train
due to costly iterative back-propagation using gradient descent.
Moreover, NN inference works based on the costly matrix
multiplication, which requires the floating point precision for
accurate recognition.

Although the accuracy is an important factor, the energy
efficiency of classifier is becoming more important by going
toward IoT domain. It is crucial to have a low-cost clas-
sification technique which can efficiently train and test on
embedded devices, while providing good accuracy. This local
data processing: (i) improves the computation efficiency by



Fig. 1. Example of voice signal in time and frequency domain.

addressing data movement issue, (ii) provides higher network
bandwidth and (iii) makes the computation more secure by
avoiding to send the data to cloud to process. Thus, in this
work we propose a novel classification technique with HD
computing, which supports one-shot training, along with fast
and efficient test operation. Our design uses basic linear
algebra and simple Hamming distance operations for efficient
classification.

B. HD Computing
HD computing operates with high-dimensional vec-

tors, aka hypervectors. Hypervectors are holographic and
(pseudo)random with i.i.d. components. A hypervector con-
tains all the information combined and spread across all
its components in a full holistic representation so that no
component is more responsible to store any piece of informa-
tion than another. These unique features make a hypervector
robust against errors in its components. Hypervectors can be
manipulated with arithmetic operations, such as binding that
forms a new hypervector which associates two hypervectors,
and bundling that combines several hypervectors into a single
composite hypervector. The reasoning in HD computing is
based on similarity between the hypervectors. This similarity
is measured by a distance metric.

HD computing is able to operate with analog inputs as
well, examples include biosignal electromyography processing
for hand gesture recognition [12] and electroencephalogram
classification for brain-computer interfaces [13]. These appli-
cations use HD computing to encode spatial and temporal
analog signals. In contrast, in this paper we focus on mapping
voice signals in frequency domain into HD space for speech
recognition.

III. PROPOSED VOICEHD
In this section, we propose VoiceHD, a novel design for

energy-efficient and fast speech recognition. VoiceHD encodes
voices to HD space and then classifies them by the similarity
check. VoiceHD has two main blocks: an encoder and an
associative memory. In train mode, VoiceHD only uses the
encoder and write into associative memory, whereas the test
mode uses both encoder and associative memory.

A. VoiceHD Encoder
In this section, we describe the proposed encoding scheme

which maps input data to HD space. We focus on the Isolet

dataset [16] with the goal of recognizing the voices among
26 letter of English alphabets. There are well-defined pre-
processing steps for voice such as Mel-frequency cepstral
coefficients (MFCCs) [25], which extracts and maps a raw
voice information into the frequency domain. Figure 1 shows
a sample of voice signal from Isolet dataset, with 617 input
frequency bins. The signal amplitude in each frequency bin
varies from -1 to +1. The goal of VoiceHD is to encode this
voice signal in the frequency domain to a single hypervector
with D dimensions. The encoder outputs a voice hypervector
with D binary (0,1) components.

To this end, our encoding considers the impact of each
frequency bin and its signal amplitude on the final voice
hypervector. Our encoder assigns a unique channel ID to each
frequency bin by generating a random hypervector called ID
hypervector. Hence, two frequency bins will have orthogonal
ID hypervectors: δ (IDi, ID j) > 5000 for D = 10,000 and
i 6= j; where the δ measures the Hamming distance between
the hypervectors. For example, in Isolet dataset each input
voice has 617 input frequency bins, therefore requires N = 617
IDs, i.e., ID1, . . . , ID617.

As Figure 2 shows, in each input channel the signal ampli-
tude changes from -1 to +1. For mapping this continuous range
of values, we use the concept of continuous item memory
proposed in [12], [13]. The continuous item memory provides
fast and efficient lookup actions to map a continuous scalar
value to hypervectors. Its implementation is indeed hardware-
friendly when the range of scalar values is known; otherwise
more general approach, e.g., in [11] can be used to map even
a continuous-valued multivariate input to hypervectors by at
higher hardware costs.

The continuous item memory linearly divides the full range
of amplitude values ([-1,+1] to M levels and assigns a mixture
of correlated and uncorrelated hypervectors to each level (L1,
L2 ,..., LM−1, LM], where Li shows the hypervector of level
ith. In contrast to hypervectors of IDs, there is a correlation
between the hypervectors of neighbour levels. For example,
L1 has a high positive correlation with L2, almost no cor-
relation with LM/2 (i.e., quasi-orthogonal), and high negative
correlation with LM . To this end, we first randomly generate L1
hypervector with D dimension for the fist level. Then, we then
flipped D/(M−1) bits of L1 to generate another hypervector
for the next level (i.e, L2). This procedure continues until
generating LM hypervector from LM−1 hypervector.

To encode the voice signal, our encoder (shown in Figure 2)
looks at each frequency bin and multiplies its channel ID
hypervector to its corresponding level hypervector. The level
hypervector is chosen among the M hypervectors based on
the amplitude of the signal in the frequency bin. The encoder
applies these multiplications over all N frequency bins and
then bundle these bound hypervectors together using the
bundling operation. The following equation shows how the
N channel IDs and corresponding level hypervectors generate
a single voice hypervector for a given voice signal example in
ith class (Si):
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Si
1 = [Lm ∗ ID1 + . . . + Lm ∗ IDN ] m ∈ [1,M]

We should note that the binding operation is a component-
wise multiplication (e.g., XOR), while bundling operation
is a component-wise majority function and is denoted as
[hypervector]. The majority function counts the number of
1’s in each dimension of hypervector, and outputs a 1 in that
dimension if more than half of elements are 1. Similarly, the
output value will set to 0, if more than half of elements are 0.
Next, we generate a hypervector as the class prototype by
bundling all voice hypervectors which belong to the same
class. Our encoding uses the same majority function to bundle
the voice hypervectors to a class hypervector. The following
equation shows how K voice hypervectors are bundled to
generate ith class hypervector (Ci):

Ci = [Si
1 + Si

2 + . . . + Si
K ]

B. Associative Memory

A class hypervector can be written to a row of associative
memory as the learned patterns (see Figure 2). Once the last
class is learned, it will be the end of training mode. In test

Algorithm 1 Proposed VoiceHD encoding and associative
memory

mode, an unseen input voice is encoded to a hypervector
using the same encoder for training. This query hypervector is
compared to all stored hypervectors in the associative memory
and a class with highest similarity will be returned.

Algorithm 1 shows the required steps of VoiceHD in the
encoder and the associative memory. After assigning hyper-
vectors to N channels and M vector levels, the encoding starts
multiplying the ID hypervector with the corresponding level
hypervector in the channel. Encoder combines these bounded
hypervectors by applying the majority function to generate the
voice hypervectors. The algorithm applies the same majority
function to all generated voice hypervectors in each class to
get a hypervector of the corresponding class (line 6). The
classification applies over the testing dataset, by similarly
mapping the input signals to HD space and calculating the
distance function between the query and the class hypervectors
(line 11). Finally, the classification is done by looking for a
class with the maximum similarity (line 13).

C. Digital Hardware Design for VoiceHD

In this section, we propose a simple digital hardware for
VoiceHD. We aim to illustrate its plausibility for an efficient
dedicated hardware implementation by describing the oper-
ations the are requires in details. Our hardware design is
consist of the encoder and the associative memory as shown in
Figure 3. Our design uses two memory blocks: ID memory to



store N channel ID hypervectors, and continuous item memory
to store M level hypervectors. The encoder fetches the corre-
sponding hypervectors from each of these memories. These
hypervectors are then multiplied together. As Figure 3 shows,
the multiplication between IDs and Ls is performed using
XOR gate array. To bundle these hypervectors across all the
channels, the majority function is applied using counter and
comparator in each dimension. The counter accumulates the
number of 1s in each dimension, and a comparator compares
the result with a threshold value. For majority function, this
threshold sets to be the half of the hypervectors summing up
together.

During the testing, the input signal is passed through the
same encoder and is mapped to a query hypervector. The
query hypervector is then compared with all stored class
hypervectors using an XOR array. The XOR array measures
the Hamming distance as similarity metric between the query
hypervector to all classes hypervectors. For every dimension
of hypervector, the XOR array sets a one in that dimension in
case of mismatch between the query and stored hypervector,
otherwise the XOR array sets a zero. The number of 1s at
each XOR row shows the Hamming distance of the query
hypervector to stored class. At the second stage, a counter
adds the number of mismatches at each row of XOR array.
Finally, a comparator block, implemented in a tree structure,
finds a class which has the minimum Hamming distance to
query hypervector.

D. Parameters

We tested the proposed VoiceHD design over Isolet dataset,
where 150 subjects spoke the name of each letter of the
alphabet twice.

Figure 4 shows the impact of splitting the voice signal
to different number of levels, M, on VoiceHD classification
accuracy. Our evaluation shows that the M should be large
enough to differentiate the patterns of voice amplitudes. In
terms of energy consumption, large M increases the size
of continuous item memory and results in slightly higher
encoding energy. Our result shows that using M = 10 results
in the maximum accuracy of 88.4%. Note that using large M
than 10 will degrades the encoding efficiency with no impact
on the classification accuracy.

E. Retraining: Associative Memory Updates

VoiceHD has 26 class hypervectors each representing one
letter of English alphabet. In the training mode, each output
class is generated by combining 2,300 voice signals. Adding
large number of vectors to a single hypervector results in a
capacity issue and loss of accuracy. For instance, the proposed
design by adding all vectors together results in 88% classifi-
cation accuracy. In order to avoid this issue, we retrain the
associative memory by incremental updates that improves the
classification accuracy. The goal of such retraining is to reduce
the misclassification rate of VoiceHD by modifying the trained
class hypervectors. After training the VoiceHD, our design
tests the classification accuracy over the training dataset. For
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Fig. 4. The impact of the number of levels (M) on the recognition accuracy
of the proposed encoding.

any trained data which classifies wrongly, our design modifies
the class hypervectors to avoid such misclassification in future.
The changes are categorized in two: (i) subtracting the query
hypervector from the class hypervector which it wrongly
classified with, and (ii) adding the query hypervector to an
actual class that signal belongs to it. This update by addition
and subtraction results in generating more distinguishable class
hypervectors.

Considering an example that the query hypervector (Q)
belongs to jth class (C j), but it wrongly matches with the
hypervector of ith class (Ci). Our retraining method makes the
following modifications to the class hypervectors:

Ci =Ci−Q

C j =C j +Q

These updates continues over all the training examples only
for one iteration. Our evaluation shows that the proposed asso-
ciative memory update significantly improves the classification
accuracy to 93.8% which is comparable with the state-of-the-
art learning techniques to classify the same dataset. For exam-
ple, the K-nearest neighbor (KNN) algorithm using Euclidean
distance achieves 91.4% accuracy and a multi-task deep NN
(with 48 hidden layers) provides 95.9% accuracy [26], [27],
[28]. The size of this deep NN is indeed large compared to the
VoiceHD using a single stage of the encoder and associative
memory. Further, our proposed VoiceHD has the following
advantages over the prior classification techniques:
• In contrast to the most of learning algorithms which

require iterative training, VoiceHD supports fast and
efficient one-shot learning (i.e., it requires few examples
to learn).

• HD computing requires bit-wise computations over hy-
pervectors in both train and test modes. These operations
are fast and efficient as compared to floating-point oper-
ations that state-of-the-art classification algorithms use.

IV. VOICEHD+NN:VOICEHD PLUS A SIMPLE NN

Our observation over VoiceHD shows that it works well in
getting the general information from the input voice signals
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with substantially higher efficiency. For example, over the Iso-
let dataset, the HD can properly categorize most of cases in the
letter of alphabet. However, it is hard for VoiceHD with single
stage to recognize the hard tasks, e.g., distinguishing T from
C, or M from N. To further improve the VoiceHD classification
accuracy, in this section we propose VoiceHD+NN to combine
VoiceHD with a simple NN stage at the end. To do so, we train
the NN block that works on the VoiceHD similarity outputs.
This NN accepts 26 output classes of VoiceHD as inputs (layer
with 26 neurons) and uses a hidden layer (with 50 neurons)
and an output layer (with another 26 neurons) to improve
classification.

A. VoiceHD+NN Flow

Figure 5 shows VoiceHD+NN flow for training and testing.
The VoiceHD+NN training has three steps. First, we train
VoiceHD by single time passing through the training dataset.
The output of this training is 26 class hypervectors, each
representing a class of voice signal. In the second step, we
retrain VoiceHD as we earlier described by passing through
the training dataset once again. Finally, we use this retrained
model to adapt NN weights. NN training is done by using
gradient descent. However, due to the small network size this
training is relatively fast as compared to training large and
deep NN. During the test mode, VoiceHD uses the same
encoding block as the training phase to compute a query
hypervector. The query hypervector is compared with all the
class hypervectors in the associative memory. Based on the
similarity measurement in the associative memory, each class
will get a Hamming distance between 0 and D. Finally, NN
with the trained weights operates on these distance values over
all the classes to decide about the best output class. Coupling
VoiceHD with this NN stage improves its accuracy from 93.8%
to 95.3% as shown in Figure 6(a).

V. EVALUATIONS AND EXPERIMENTAL RESULTS

A. Experimental Setup

We first describe the functionality of the proposed VoiceHD
and VoiceHD+NN using Matlab implementation. We use Tiny-
dnn [29] to implement NN architecture in C++. We then

TABLE I
ENERGY CONSUMPTION AND EXECUTION TIME OF NN, VOICEHD,

VOICEHD +NN DURING TRAINING AND TESTING ON CPU.

NN VoiceHD VoiceHD +NN
Training Execution Time/Dataset 17min 3.7min 5.9min

Testing Energy Consumption/Query 454mJ 38mJ 53mJ
Execution Time/Query 4.61ms 0.87ms 1.14ms

compare the power, execution time, and accuracy of these
designs running on CPU cores. We use Intel Core i7 processor
with 16 GB memory (4-core, 2.8GHz) to train and test.
For measurement of the CPU power, we use Hioki 3334
power meter. To estimate the cost of digital design, we also
use a standard cell-based flow to design dedicated hardware
for VoiceHD and VoiceHD+NN. We describe the proposed
designs using RTL System-Verilog.

To assess the efficiency of proposed design, we apply the
application to the speech recognition of 26 English letter
of alphabets. The training and testing data sets are taken
from the Isolet dataset [16]. This dataset consists of 150
subjects pronounce each letter of the alphabet twice. The
speakers are grouped into sets of 30 speakers each, and are
referred to as Isolet1, Isolet2, Isolet3, Isolet4, and Isolet5.
The training is performed on Isolet1+2+3+4, and testing is
done on Isolet 5. We compare the efficiency of our HD-based
designs with the well-known NN designs in the following.
Although there is a deep NN [26] with low error rate of 4.1%
over the Isolet dataset, its topology uses 48 hidden layers
which makes its efficiency unreasonable to compare with the
single stage VoiceHD and tiny VoiceHD+NN. Instead, we
use another relatively smaller NN with three hidden layers
(L1 : 617, L2 : 1024, L3 : 1024, L4 : 512, L5 : 26) which
provides 6.4% error rate [26], [27], [28]–we refer to it as NN
in the rest of paper.

B. Training Efficiency

We compare the energy efficiency and speedup of HD-based
designs and the NN during the training mode. Table I lists the
training execution time of VoiceHD, VoiceHD+NN and NN on
CPU. The result shows that VoiceHD provides significantly
higher efficiency than NN during training. This efficiency
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Fig. 6. The accuracy, energy consumption, and execution time of the synthesized HD-based designs with scaled dimensionality.

comes from (i) one-shot learning capability of the HD and (ii)
using simple element-wise operations for computation rather
than using costly floating-point operations. This efficiency is
more obvious in the dedicated digital design, as the CPU cores
do not use dedicated hardware for fast element-wise HD oper-
ations. Our evaluation shows that VoiceHD and VoiceHD+NN
provide 4.6× and 2.9× faster training time compared to NN.

C. Testing Efficiency

Table I lists the average energy consumption and execution
times of VoiceHD, VoiceHD+NN and NN for a voice query
over the test dataset. For VoiceHD and VoiceHD+NN, both
encoder and associative memory contribute to VoiceHD energy
and execution time. However, the encoder is the dominant
part since it operates on N = 617 input channels as the
frequency bins, while the associative memory has only 26
classes. Comparing VoiceHD and VoiceHD+NN indicates that
the VoiceHD provides the maximum efficiency due to using
pure HD operations. In VoiceHD+NN design, its NN stage
increases the energy consumption by performing the costly
matrix multiplication using floating-point numbers. Although
the VoiceHD+NN consists of both HD and NN layers, it still
provides higher efficiency compared to the pure NN with
fpur hidden layers. Our evaluation shows that the VoiceHD
and VoiceHD+NN provide 11.9× and 8.5× higher energy
efficiency, and 5.3× and 4.0× speedup compared to NN, while
providing the similar test accuracy.

D. Scalability

Here, we compare the efficiency of synthesized VoiceHD
and VoiceHD+NN using hypervectors with smaller dimensions
(D). Figure 6(a) shows the classification accuracy when the
dimension of hypervectors is scaled from 10,000 to 1,000.
The result shows that the HD-based designs provide a grace-
ful degradation with the reduced dimensions. In comparison
with VoiceHD, VoiceHD+NN performs slightly better at the
lower dimensions: for example, decreasing the dimension
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Fig. 7. Classification accuracy of VoiceHD, VoiceHD+NN and NN in partial
training.

from 10,000 to 1,000 reduces the VoiceHD and VoiceHD+NN
classification accuracy only by 2.1% and 1.6%, respectively.
This is due to the fixed size of NN stage that can compensate
the misclassifications due to low dimensionality in VoiceHD.

Figure 6(b),(c) show the energy consumption and execution
time as well. As shown, the dimension has direct impact on
the energy and execution time of both designs. In the encoder,
the large dimension increases the size of component-wise
operations. In the associative memory, the higher dimension
increases the size of XOR array. In addition, the bit-width of the
counter (and, comparator) blocks increases linearly (and, loga-
rithmically) with the hypervector dimension D. This results in
higher energy consumption and slows down the computation
of the associative memory in large dimension. Considering the
overall efficiency, increasing the hypervector dimension from
1,000 to 10,000 increases the energy consumption of VoiceHD
and VoiceHD+NN by 10.0× and 5.4×, and results in 1.4× and
1.2× higher execution time respectively.



E. Partial Training

We compare the learnability of VoiceHD, VoiceHD+NN,
and NN in terms of their ability to infer from a smaller
training dataset. For NN, the momentum is set to 0.1, the
learning rate is set to 0.001, and the batch size to 10 [30].
Dropout [31] with drop rate of 0.5 is applied to the hidden
layers to avoid over-fitting. The activation functions are set
to rectified linear unit clamped at 6. A softmax function is
also applied to the output layer. Figure 7 shows the accuracy
of VoiceHD, VoiceHD+NN and NN designs when the have
been trained only with a portion of training dataset. The figure
indicates that the HD-based designs show significantly faster
learning rate compared to NN. For example, VoiceHD and
VoiceHD+NN can still maintain high accuracy of 91.7% and
92.9% when they use only 40% of examples in the training
dataset, while the NN accuracy sharply drops by shrinking the
training examples below 80%. When training with only 20%
of the examples, both HD-based designs show classification
accuracy above 85% while NN shows an accuracy lower than
80%. Moreover, it is clear that by using the full set of training
examples, the tiny VoiceHD+NN surpasses the accuracy of
NN with three hidden layers (95.3% versus 93.6%).

VI. CONCLUSION

In this paper, we propose VoiceHD, a novel design based on
HD computing for fast, efficient and highly accurate speech
recognition. VoiceHD is design to significantly reduce the
cost of training and testing for speech recognition. VoiceHD
encodes a voice signals in the frequency domain to random
hypervectors and combines them to generate a prototype
hypervector representing each class. VoiceHD+NN further
couples a small neural network (with a total number of 102
neurons) at the last stage of VoiceHD to improve the resolution
of similarity measures and decision. We evaluate efficiency
of VoiceHD and VoiceHD+NN compared to a deep neural
network (with a total number of 3,203 neurons) over Isolet
spoken letter dataset. Using the full set of training examples,
VoiceHD and VoiceHD+NN show classification accuracy of
93.8% and 95.3% which are marginally better than the deep
neural network (i.e., 93.6%), in additions to 11.9× and 8.5×
higher energy efficiency. Moreover during testing, VoiceHD
and VoiceHD+NN achieve 5.3× and 4.0× faster execution on
CPU compared to the deep neural network; similarly during
training 4.6× and 2.9× faster executions are achieved.
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