
CAP: Configurable Resistive Associative Processor for Near-Data Computing

Mohsen Irnani, Tajana Rosing
CSE Department, University of California San Diego,

9500 Gilman Drive, La Jolla, CA 92093, CA, USA
E-mail: {moimani, tajana}@ucsd.edu

Abstract
Internet of Things is capable of generating huge amount of
data, causing high overhead in terms of energy and
performance if run on traditional CPUs and GPUs. This
inefficiency comes from the limited cache size and memory
bandwidth which result in large amount of data movement
through memory hierarchy. In this paper, we propose a
configurable associative processor, called CAP, which
accelerates computation using multiple parallel memory­
based cores capable of approximate or exact matching. CAP
is integrated next to the main memory so it fetches the data
directly from DRAM. To exploit data locality, CAMs
adaptively split into highly and less frequent components
and update at runtime. To further improve the CAP
efficiency, we integrate a novel signature-based associative
memory (SIGAM) beside each processing cores, to store
highly frequent patterns and in runtime retrieve them in
exact or approximate modes. Our experimental evaluations
show that the CAP in approximate (exact) mode can achieve
9.4x and 5.3x (7.2x and 4.2x) energy improvement, and
4.lx and l.3x speeds up compare to AMO GPU and ASIC
CMOS-based designs while providing acceptable quality of
service.

Keywords
Non-volatile memory, associative processor, approximate
computing, content addressable memory.

1. Introduction
In 2015, the number of smart devices around the world
exceeded 25 billion. This number is expected to double by
2020 [l]. The rate of data generation by the Internet of
things (Io1) will quickly overtake the capabilities of current
computing systems. The need for systems that can
efficiently handle such large volumes of streaming data is
undeniable [2]. Several IoT applications, e.g., machine
learning, are statistic in heart and do not require highly
accurate computation. Instead of doing all computation
precisely, by accepting slight inaccuracy, we can get
significant energy and performance improvements [3].
IoT increases the size of application's datasets
exponentially. Running such large datasets on general
purpose processors degrades both computation energy and
performance. The inefficiency is due to limited cache size
and memory bandwidth of processors which result in a large
number of data movements through memory hierarchy. [4].
Near Data Computing (NDC) is one of the promising
solution to overcome data movement [5], [6]. NDC locates

978-1-5090-5404-6/l 7/$31.00©2017 IEEE 346

processing units close to the main memory, such that the
processor can directly access to DRAM data and avoid the
memory/cache bandwidth bottleneck. However, adding
extra dedicated CMOS-based processing units beside
DRAM may result in additional energy and area overhead.
Memory-based computing can address the problem by
performing the computation within memory [7). Ternary
content addressable memories (TCAMs) in a form oflookup
table are a good candidate for memory-based computing.
CAMs in CMOS technology consume a lot of search energy
and occupy large area of the chip [8]. Low energy
consumption and high density of non-volatile memories
(NVMs) open new opportunities to have an efficient
associative processor [9].
To the best of our knowledge, this paper is the first to
propose configurable resistive associative processor, called
CAP, which processes the data adaptively considering data
locality and aware of running workload. CAP performs
memory-based computation on crossbar CAM blocks beside
the main memory to avoid large amount of data movement
between the memory hierarchies. Our design consists of
several cores where each core is designed based on a CAM.
Each CAM preforms block-serial search operation (m-bit)
and addresses endurance issue of resistive CAM by
eliminating a number of writes. In contrast to all previous
work which used naive CAMs for computation, CAP
building block is an adaptive CAM which splits TCAM to
high and low frequency rows and updates them based on the
running applications. To fully exploit data locality, we
enable configurable approximation by utilizing a novel
signature-based associative memory (SIGAM) beside the
processing units. Our experimental evaluation shows that
CAP can achieve 9.4x and 5.3x (7.2x and 4.2x) energy
savings and 4.1 x and l.3x speeds up compare to AMD GPU
and ASIC designs while providing acceptable quality of
service.

2. Background and Related Work
Associative memory consists of two main blocks: a TCAM
and a memory, where a set of input patterns and their
corresponding outputs are respectively stored [10), [I I],
[12). When a computation is issued, the operands are
searched for in the TCAM. If there is a match, the
corresponding result is returned from the memory [13). In
CMOS technology, TCAMs are designed using two SRAM
cells, and so consume a lot of energy for each search
operation. High density, CMOS compatibility and nearly­
zero energy consumption make NVMs appropriate

18th lnt'I Symposium on Quality Electronic Design

(c)

J ..

(b)
Figure l. Overall structure of proposed CAP

I
I
I

' I \ ... �.,

Bank (PX RPO)
�-- A.UOLSU.._ B --- ' rt .=·---·- -=- -- Ad1pdveCAM

I
-� -,

_,
� -.,

-· 1- ��;;!.,._.--�- ! -u•...- � "U. �-- ..

�' � � ··· �r � Lc-:; 61
... ,, c. �

(a)

candidates for the TCAM design. Resistive RAM (ReRAM)
and Spin-transfer Torque RAM (STT-RAM) are two types
of high speed and reliable NVMs based on memristive
devices and magnetic tunneling junctions (MTJ),
respectively [14). The endurance of the ReRAM is 106-101
write operations while for STT-RAMs it is more than 1015

[15-17). TCAMs with MTJ device have higher endurance,
and the ReRAM-based TCAMs provide higher search speed
and area efficiency when utilizing 3D crossbar structure
which makes them more suitable for low energy associative
memories. In this work, we use ReRAM but address the
endurance problem by using a computation strategy that
does not require frequent write operations.

Researchers have proposed many different energy-efficient
techniques that exploit NVM-based TCAMs. Using NVM­
based TCAMs next to parallel processors such as GPU can
provide significant energy savings by reducing redundant
computation [10], [11], [12), [18]. An approximate
associative memory using TCAM with voltage overscaling
was also proposed to relax FPU computation. This idea has
been extended to a configurable approximate associative
memory which tunes the level of approximation [18].
Although associative memories provide large energy
savings, they still rely on the computing capability of the
conventional general purpose processors. Thus, their
designs cannot efficiently handle large data movement,
which is the dominant component of energy consumption
and performance bottleneck in workload parallelization.

The aim of associative processor is to perform the
computation by looking up the preprocessed data without
doing repeated computations [9], [19), [20). Adder (ADD)
is the main building block of computation. Other basic
processing units such as subtractor (SUB), multiplier (MUL)
and divider (DIV) can be implemented using adder. To add
two n-bit data using associative processor (e.g. A[n .. OJ +
B[n .. OJ = Sum [n .. OJ + Carry [OJ), we require to store all
22n input combinations on a lookup table. Meaning that
comparing the input key with all stored patterns in row­
serial manner, requires 0(2n) cycles [21). To improve this
slow search operation, bit-serial search operation technique
have been proposed in [9] and [22], where the computation
can be performed by recalling l-bit adder truth table (8-row)
n times. In bit-serial technique, a simple n-bit addition and
multiplications require O(n) and O(n2) to process. However,

associative processors still have long search latency and
high energy consumption as discussed below:

Latency: associative processors using bit-serial search have
slow search operations, especially for MUUDIV [19].
Using I-bit adder block to design multiplication makes
MUL a computational bottleneck. To address this problem,
for multiplication we use ADD/MUL LUTs in tree structure
to get high search speed. In addition, we use block-serial
search operation which searches for input data in m-bit
granularity, instead of bit-serial search.

Energy: Naive computation of current associative
processors does not consider data locality or type of
workload in computation. In other words, they consume the
same amount of energy for an operation independently of
the input data. However, our associative processor: i)
considers the data locality and application type in the
processing units using a configurable CAM, ii) enables
configurable processor approximation and iii) enables near
data computing to avoid a large number of data movement.

3. Proposed CAP Design
Figure 1 shows the architecture of our proposed
configurable associative processor (CAP), consisting of
multiple parallel memory-based cores. CAP can be
implemented beside the main memory to decrease the
number of data movements through memory hierarchy.
Instead of having multiple memory levels, CAP uses a
shared cache among all processing cores. When application
starts, a sequencer processor begins fetching instructions
and data directly from DRAM. Then, scheduler assigns the
current jobs to appropriate core(s). CAP adaptively
processes the computation considering data locality and
running workload. Table 1 shows the parameters of the
proposed associative processor. Our design contains N
subcores where each subcore has M banks. Each bank is a
TCAM-based associative process representing ADD/SUB
and MUUDIV operations. ADD/SUB processing unit has S
pipeline stages where each stage stores a lookup table
corresponding to k-bit basic operation (S=n/k). In
computation, the carry-out bit of the current stage is used as
an input bit of the next stage associative memory (carry-in
bit). After Sh stage, the stored data in the register shows the
output of associative processor computation and the carry­
out of the last stage represents the overflow bit.

For example, if20% ofTCAM rows can provide {3=70% hit
rate, the proposed CAM can achieve -2.3x energy savings
compared to conventional TCAM. The ratio of HF to LF

negligible area by implementing a 30 architecture. The area
of crossbar resistive memory is 4F2/n, where F is the
minimum feature size and the n is the number of resistive
layers in 3D.

(1) TA CAM = P(%) x T11F + (I - P)(%) x (T LF + 7irF) + To.,.ec,

Figure 2. Structure of adaptive CAM consisting of low and highly
frequent parts.

In associative processor the number of TCAM rows
increases exponentially with the size of input data.
Conventional TCAMs search for an input data among all
TCAM rows in a single cycle. This inefficient search
operation results in large energy and search latency per
operation. To control the search energy, as Figure 2 shows,
we split TCAM into two components; high frequency (HF)
and low frequency (LF) rows. The search operation on
TCAM stage starts at HF part. In case of a hit in HF, CAM
stops search and saves energy. This hit can be detected
using simple combination logic which can logically OR the
outputs of sense amplifier in HF part. In case of a miss in
HF, the CAM search continues in the rest of the CAM. Our
evaluations show that storing a few rows (-20%) in HF part
can provide very high hit rate (-60-80%) and energy
savings. For each application, we use profiling to find the
HF and LF patterns corresponding to ADD/SUB and
MUUDIV operations.

To evaluate the energy advantage of propose SCAM, let's
consider the search delay of conventional CAM as TCAM.
Splitting the search operation into HF and LF parts
increases the CAM latency to Tu+Tnr+Toeea. In this
equation the Tu+T11F<2*TCAM because the search operation
on small CAM can perform faster. If the input key misses on
the HF part, it starts searching for an input data in the LF
part in the second cycle. High percentage of hits in the HF
part can accelerate the search operation in the SCAM.
Assume we have /J% hit rate on the HF part. It means that
fl% of the time we just consume the search energy/latency of
the HF part. For the rest of {l- fl)% of time, our design
requires two cycles. The expected latency and energy
savings of SCAM, assuming T11F + Toetect = TLF , can be
calculated as:

Svmbols Descriotion
N Number ofsubcores ma stage
M Number of banks of each subcore
s Number of stages of each subcore
k Granularity of block-serial search

SizeCAM CAM rows in each processing units

3.2. Adaptive CAM
lo NVM-based TCAMs, values are stored in cells based on
the NVMs resistance state (Low or High). During the search
mode, the input operands are compared to all pre-stored
TCAM patterns and if the data is found, a charged Match
Line (ML) activates the corresponding line of the resistive
memory to retrieve the result of computation. We use an
access-free transistor memory implemented purely by
memristive devices to design both TCAM and resistive
memory. Crossbar memory achieves significantly lower
energy consumption and higher scalability, while occupying

Instead of doing bit-serial computation, CAP performs
computation in block-serial way, where each block
represents a look up table of k-bit addition. In order to get
high performance MUL/DIV, we use multiplier architecture,
shown in figure 1 b, which relies on the multiplication and
adder look up tables in tree structure. The delay of block­
serial adder is proportional to the number of available stages
(O(S) where S=(n/k)). For multiplier, the delay is
proportional to delay of a k-bit multiplier, and (log(S) times
of) 2k-bit adder look up table. The ADD and MUL delay
can be express as TADo=S*Tk and TMuL=Log(S)*Tzk + Tk,
where T,.. is the delay of an associative memory
corresponding to m-bit ADD/MUL Lookup table (with 22m+1

rows).
3.1. Block Serial Search
For n-bit computation, the number of stages in

proposed design, S, depends on the k value in block-serial
search. Lower k reduces the CAM size, but increases the
number of required stages and depth of the pipeline. Our
design searches for input data in k-bit search granularity.
The CAM needs a list of all possible input data
corresponding to k-bit adder (containing carry-in bit), where
each subcore has S=n/k stages. Table 2 shows the energy
consumption and latency of doing 32-bit ADD and MUL on
different bit-search granularities. As results show, large k
increases the computation energy, but speeds up ADD
computation by decreasing the number of stages. This
indicates that based on the ratio of ADD/SUB to MUL/DID
in an application, k=l,2 or 3 bits block can provide higher
energy-latency point. In Section 4.2.2, we discuss more
about the impact of the block-serial search operation on
applications performance and energy.

Table 2. The energy and latency ofTCAM in different bit
granularities

Table I.Design parameters of CAP

Block size I-bit 2-bit 3-bit 4-bit
Energy(fJ) 554 692 1378 3473

ADD/SUB Latencytns) 8.4 7.3 7.9 9.3
#ofstaxes 32 16 8 4
Enerl!'VffJJ 1636 1890 2858 5802

MUUDfV Latencvlns) 6.4 7.8 9.6 12.7
#ofstaRes 6 5 4 3

, -------------------------,
SIG,UI SJG,OJ

TCAN IIIDI TCAM 111D1

MUX Rh

ADD/SUB
Resistiv« Processor

MUX

MUUDIV

1111

i
() f Raisth-ie Processor

"

part of CAM should be set based on the application type.
Figure 3 shows the search energy consumption of 4-bit
CAM in different HFILF ratios. In large size CAMs
(> 32rows), using small HF to LF ratio provides large energy
savings, while this ratio needs to be higher in small size
CAMs (e.g. 4-rows, 8-rows). CAP using large block sizes
(k> 1), exploits the data locality to provide higher hit rate,
energy savings and computation acceleration.

1.2

3.3. Signature-Based Associative Memory
To further improve computation energy while exploiting
data locality, we propose small size signature-based
associative memory (SIGAM) next to each processing unit
which can store high frequency patterns. SIGAM saves
energy by reducing the redundant computations. In SIGAM,
a set of frequent pattern and their corresponding outputs
store on the TCAM and resistive memory (MEM)
respectively. As Figure 4 shows, before processing data on
main CAP cores, the input operands compare to a!J pre­
stored values in SIGAM. In case of a hit, our design clock
gates CAP processing units and directly retrieves the
preprocessed result of computation from MEM block.
Therefore, the larger SIGAM, the higher average CAP clock
gating time, thus the higher energy savings. Although, large
TCAM improves hit rate, TCAM search energy can diminish
the advantages of using associative memory.

Figure 5 shows the structure of proposed SIGAM
consisting of signature TCAM (SIG-TCAM), main TCAM
and resistive memory. SIG-TCAM first compares the
signature of the input data with the signature of all pre-store
values. Then, a hit in the SIG-TCAM selectively activates
rows of the main TCAM stage. SIG-TCAM significantly
reduces the search energy consumption of main TCAM by
reducing the number of active rows in the main TCAM.
Indeed, instead of searching large main TCAM structure for
data matching, a pre-search performs on SIG-TCAM to
reduce the number of active rows on the main block.

(4)

(5)

(6)

(3)

·.·!�....;..�
f- ·�. -t

�oh,l,cME..\f

·'t:··"t:··<t:-- ····�·

Es,0 = E-...,..,, + E0111btg

EM•ltt = ax(EScu.-Amp +Eo,.,.,ng)

a= min(Hits,0,l-Hitsi0)

_ Fi�re 4. Approximation of proposed design SIGAM block

·- f- 1'-
j' - 'f --��-- ·r=I·� ·[i;J i -�·r:J ·r:J

ll f I I

The optimum number of signature bits depends on the
application type. In our design, the value of the main TCAM
and resistive memory can be determined using one-off
profiling in design time. Therefore, we can find the optimal
signature bits that have potential to provide lower search
energy, by optimization. Therefore, we formularized the
energy consumption of TCAM based on the SIG-TCAM
and main TCAM energy as follow:

Figure 5. The architecture of proposed signature-based associative
memory

All bits are not appropriate to use as signature bits. To
select the proper bits, we extract the bit-level distribution of
the pre-stored values on the main TCAM stage. Then, we
select m bits which have higher potential to reduce the
energy consumption ofTCAM. These bits can be selected as
bits that have bit distribution close to 50%, since each bit
has potential to deactivate about half of main TCAM lines.
However, considering the correlation of these bits is
essential, since they may activate several common rows.
Although, using more number of bits is likely to decrease
the number of active rows at the main TCAM, large number
of signature bits have negative impact on the total search
energy, since total search energy is the combination of both
SIG-TCAM and main TCAM:

The energy consumption of both SIG and main TCAMs
consist of sense amplifier and precharging energy. In SIG­
TCAM, the sensing energy is fixed, while the precharging
energy increases with the size of signature bits. The total
main memory energy is the linearly related to the hit of the
SIG TCAM (n value). Small n value reduces the number of
the main TCAM active rows. This value depends on the
signature bit selection. As the input data are not
deterministic, the a value is the minimum number of SIG hit

IIO 60

..,.:o;ormallud CA.\I Enttgy

?O JO

l\ormallud DH r:11�

10

IIF/LF ratio (",)

Figure 3. Average hit rate and energy consumption of 4-bit
associative memory in different HF to LF ratios.

0
0

�.
t e

:.J
0.:, o..a

:;:o.4
l = o.• " s
!s 0.2 z

�Acti"�Row
� l•1.dJvt Row

Rude�

.SIC:.SICTCA..'41
A.'4:�'11TCA.�+RNIIOt-tM•tlW7

4. Experimental Results
4.1. Experimental Setup

We compare the efficiency of proposed CAP with CMOS­
based ASIC implementation of CAP in RTL and AMD
Southern Island GPU Radeon HD 7970 device, a recent
GPU architecture. For experimental simulation, we use
System Verilog Description Language to design CAP. Then
use Synopsys Design Compiler (24] to implement it in 45nm
TSMC technology. For AMD GPU, we use Multi2sim, a
cycle accurate CPU-GPU simulator (25] for simulation.
Seven general applications: Robert, Sharpen, Matrix
Multiplication, Dwliaarl D, Sobel, Quasikandom,
BlackScholes are used to compare the energy and
performance of proposed CAP with ASIC and GPU
architecture. The image processing application has been
adopted from AMD APP SDK v2.5 in OpenCL to make it
suitable for streaming applications. The circuit of CAMs are
designed using HSPICE on 45-nm technology.

Figure 7. Framework to support CAP: design time profiling and
runtime reuse.

systems. We use Caltech 101 computer vision (23] dataset
provides testing and training data for our image processing
applications. For other general purpose applications, the
input dataset has been generated randomly. Training is done
on l 0% of input patterns, while testing is done on all the
data. For each application, input patterns are sorted on
associative memory based on the frequency patterns
obtained in raining mode (k-bit blocks). The high and low
frequency patterns update HF and LF parts of CAM
respectively. CAMs in all compute units are programmed
concurrently with the same data based on the processing unit
type.

To find the proper SIGAM configuration for each
application, our framework compares the output of running
an input data on exact and approximate processors. The
framework continues putting more partial TCAM blocks
(starting from LSBs at 8-bit granularity) into approximate
mode as long as the application meets the quality
requirements as shown in Figure 7. This requirement is
defined as 30dB PSNR for image processing applications
and 10% average relative error for other application.

4.2. CAP Configuration
4.2.1. CAP Size

The performance and energy consumption of CAP

WI optimum signature Its
Robert Sharpen Matrix DwHaar

of SIG bits 4-bit 2-bit 3-bit 4-bit
SIG hit rate 84% 73% 78% 86%

Energy savings 73.5% 61.7% 68.6% 72.2%

SIGW,,

Figure 6. An example of search operation on the proposed SIGAM
block

3.4. CAP Approximation Framework
Voltage overscaling (VoS) is one of the effective technique
to improve TCAM search energy and hit rate at the cost of
accepting inexact matching (18]. TCAM under VoS matches
the input data with pre-store value with a few bits of
hamming distances (depending on the voltage level). As the
least significant bits have lower impact on computation
result, we apply selective VoS on SIGAM block. SIGAM
increases TCAM hit rate by allowing the input data to match
with prestore TCAM values with 1-bit hamming distance in
selective starting from LSB blocks. Higher hit rate increases
the average time that the RePUs can be clock gated mode.
Then, SIGAM returns a preprocessed result of computation
stored on resistive memory. For each application, our
framework increases the number of blocks on approximate
mode till it can ensure acceptable quality of service.
We present a framework which is compatible with OpenCL
as a standard for parallel programming of heterogeneous

when the input data is zero or one.
We use Genetic optimization algorithm to find the

optimum SIG TCAM size and bit indices which can provide
maximum search energy. Our evaluation on four OpenCL
applications shows that to store 32 most frequent patterns on
a TCAM, using less than five signature bits is always
enough to provide optimum energy saving. Table 3 shows
the optimum number of signature bits and the average
energy savings that 32-bit, 16-row SIGAM can achieve in
different applications. Our evaluation shows that using less
than four signature bits can improve the energy consumption
of SIGAM -70% in average. Figure 6 shows an example of
search functionality of 9-bit input data (1011001002) in
SIGAM using 3-bit signature. Conventional technique
naively searches for an input data in all TCAM rows which
requires several switching activity. Instead, SIGAM
architecture starts searching the input data on SIG TCAM
(4ro, 5th and 7th bit indices of input data). So, the SIG hit on
the two SIG TCAM rows activate the corresponding lines of
main TCAM and resistive memory. In-advance row
activation of the resistive memory allows our design to fast
read of resistive memory without waiting for precharging.
Table 3. The search energy consumption ofTCAM using SIGAM

"th bi

Figure 8. Performance and power consumption of CAP using
different number of processing units

.. ..,

"

.}

...
KlotL ,1.,,

(b) Sharpen

"
• ..,...,('--. .. Gl�)-� .. ('--.MMK) ..

e •

L L�U1?l:�L
I_.... Uil J.. f.till • • IWI

tlkl<ti" 'lit'
(a) Robert

! •
! • � e.

l e � l b:·r: L b L:'
:.... ..,._ • 1.- :41111 ,-... •

IJlod, �' Bloc,L. Mu
(c) MatrixMul (d) DwHaarlD

Figure 9. Energy improvement and performance speed up of CAP
using different block size.

! •
!
f • e �·
l:

.c......, ('..-.. l•GP\) -lllNWt ('--. le MlCl

Increasing the block size from I-bit, speed up the
computation by reducing the number of intermediate
accesses. However, CAM in 4-bit block size has 29=512
rows, requiring slow and energy hungry input buffer to
distribute input data among all CAM rows. we consider
energy-delay product (EDP) as a figure of merit to find the
best block size. Our evaluation shows that RPU using 3-bit
block can achieve 4.4x and 23x EDP improvement in
average compared to ASIC design. In this configuration, the
CAP achieves 5.9x and 3.4x energy improvement and 4.1 x
and l.3x speed up compare to ASIC and A.MD GPU.
4.3. CAP Approximation

Our evaluation shows that for all applications using small
size associative memory (8-row or 16-row) results
maximum CAP energy saving. Figure 10 shows CAP
normalized energy consumption using proposed SIGAM in
different sizes. There is a tradeoff between the energy
consumption of SIGAM and RPU depending on the size of
the TCAM. A SlGAM with large number of rows increase
the hit rate and thus the average time that the RPU can be
clock gated. However, large SIGAM requires slow and
power hungry buffer to distribute the input signals to all
rows simultaneously. The delay and energy introduced by
big buffer prevents searching the entire block in a single
cycle and degrades the search energy efficiency. In addition,
the ratio of SIGAM hit rate to search energy cannot further
improve with increasing the TCAM size because of SIGAM
hit rate saturation.
To further improve the CAP processor energy consumption,
we relax the computation by implementing approximation
on SIGAM block. Approximate SCGAM reduces the search
energy consumption of the main TCAM and also improves
the energy of RPU block. Table 4 lists the portion of
SIGAM bitline on voltage overscaling using 8-bit relaxation
granularity, providing less than 10% quality loss. Figure l O
shows the energy consumption of CAP processor applying
under SIGAM approximation. Our evaluation shows that
SIGAM can improve the CAP energy consumption by

the search operation by reducing the number of intermediate
access.

'\umbt..- or Ret'L
..

Jlr,. , l.?.lrt. ,, ..
X•mlwirn(R.l'PI"

Ur. 0.. ta.. Uh. m1o

4.2.2. Block-Serial Search
As we explained in Section 3.1, in CAP the search

operation performs in block serial approach. In ADD
operation, the computation starts by looking up the k bit data
in the first associative memory stage, containing 2at1 rows.
For looking up the second k bits, we need to use a carry out
bit of the first block as an input of the second stage. This
means that the search operation on the next associative
memory stage starts by reading the carry-out bit of the
current stage. These dependencies slow down the serial
search operation. To compensate such slow search, CAP
needs to use large blocks because in block-serial, CAP does
not wait for intermediate stages to read the carry bit.

Figure 9 shows the energy and performance
improvements of CAP using different block size compared
to ASIC and GPU architecture. CAP consumes significantly
lower energy consumption compare to both designs.
Although larger block decreases the number of stages
linearly, the CAM size in each stage grows exponentially
with the block size. Thus, CAP using larger block speeds up

.111111/ 2 J ... S i J j • i
Numbu or U)t-D (•) �un1btr or b)tn (•)

depend on the number of processing units. As Figure 8
shows, the energy consumption of CAP grows Linearly with
the number of processing units. However, large number of
processing units improves CAP performance by increasing
parallelism. In our design two factors can limit the number
of RPUs in CAP: i) power density considering chip thermal
design. This power is 300W for recent parallel processors
such as AMD GPUs. ii) Area occupation of the CAP. High
density of crossbar non-volatile CAMs (8F2/n) and resistive
memories (4F1/n) allows integrating associative memories in
30 structure, where Fis feature size and n is the number of
vertical layers. For n=I, this integration allows putting 3K
RPU on a same silicon area as floating point units in AMD
GPU which contains 32 computing units, where each has 4-
SIMD and each SIMD contain 16 lanes (2048 streaming
cores). The RPU density increase by extending the number
of vertical layers. However, using more than 5-layers slows
down the computation and exceeds 300W thermal design
power. Therefore, a CAP processor can achieve 15K RPUs
which is 6x larger than the number of processing units in
AMD southern Island GPU, a most recent GPU architecture.
Figure 8 shows the performance and the power consumption
of the CAP compare to A.MD GPU. As graph shows, the
CAP performance increases linearly with the number of
processing cores up to 6.1 TFLOP/s using l5K RPUs
integrated in 5 vertical layers.

.Eu<1 StCAM -Aooroxlm•l•�tCA.\t ..

average 32% and 49% in exact and approximate modes
providing less than 10% quality loss.

Table 4. Maximum portion ofSIGAM in approximate mode while

slow bit-serial search to block-serial search operation to
speed up the search process iii) our design relaxes the CAP
computation by applying configurable approximation
starting from least significant bits. Our experimental
evaluations show that the CAP processor in approximate
(exact) mode can achieve 9.4x and 5.3x (7.2>< and 4.2x)
energy savings and 4.1 x and 1.3 x speeds up compare to
AMD GPU and ASIC designs while meeting target quality
requirement.

6. Acknowledgment
This work was supported by NSF grant # 1527034 and
Jacobs School of Engineering UCSD Powell Fellowship .

7. References
fl] J. Gantz, et al., "Extracting value from chaos," /DC iview, vol. 1142, pp. 1-
12, 2011.
[2] J. Gubbi, et al., "Internet of Things (loT): A vision, architectural elements,
and future directions," Future Generation Computer Systems, vol. 29, pp.
1645-1660, 2013.
f31 M. lmani, et al:.t "Maximum-Likelihood Adaptive Filter for Partially
06served Boolean Dynamical Systems," lEEE Transactions on Signal
Processing, vol. 65, pp. 359-371, 2017 .
f4] A M. Aly, et al., "M3: Stream processing on main-memory mapreduce,"
International Conference in Data Engineering (ICDE), pp. 1253-1256, 2012.
f5] R. Balasubramonian, ct al., "Near-data processing: Insights from a MICRO­
<l6 Workshop," Micro, fEEE, vol. 34, pp. 36-42, 2014.
f6] G. Loh, ct al., "A processing in memory taxonomy and a case for studying
fixed-function pim," in Workshop on Near-Data Processing (WoNDP), 2013.
f7] R. J. Gerrig, "The scope of memory-based processing," Discourse
Processes, vol 39, pp. 225-242, 2005.
[8] H. J. Mattausch, et al., "Associative memory for nearest-Hamming-distance
search based on frequency mapping," IEEE JSSC, vol. 47, pp. 1448-1459,
2012.
f91 Q. Guo, et al., "Ac-dirnrn: associative computing with stt-rnram," in ACM
SfGARCH Computer Architecture News, pp. 189-200, 2013. r I OJ M. lmani, et al., "MASC: Ultra-low energy multiple-access sinj:le-eharge
tCAM for approximate computing," in IEEE/ACM Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2016, pp. 373-378.
fl I) M. lrnani, et al., "Approximate Computing using Multiple-Access Single­
Charge Associative Memory," IEEE Transactions on Emerging Topics in
Computing (I'ETC), 2016.
fl 2) M. lmani, et al., ''ReMAM: Low enc� Resistive Multi-staze Associative
Memory for energy efficient computing, in International Symposium on
Quality Electronic Design (ISQED), pp. 101-106, 2016.
fl31 M. Samragh, et al., "LookNN: Neural Network with No Multiplication,"
1E£EIACM Design Automation and Test in Europe Conference (DATE), 2017.
(14] M. lmani, ct al., "ACAM: Approximate Computing Based on Adaptive
Associative Memory with Online 'Leaming," in International Symposium on
Low Power Electronics and Design (!SlPED), 2016.
(15] Y. Kim, et al., "CAUSE: critical application usage-aware memory system
using non-volatile memory for mobile devices," in IEEE/ACM International
Conference on Computer-Aided Design (JCCAD), pp. 690-696, 2015.
fl 6) N. Khoshavi, et al., "Bit-Ul'sel Vulnerability Factor for eDRAM Last
Level Cache Immunity Analysis," m IEEE International Symposium on Quality
Electronic Design (ISQED), pp. 6-11, 2016.
fl7) N. Khoshavi, ct al., "Read-Tuned SIT-RAM and eDRAM Cache
Hierarchies for Throughput and Energy Enhancement," arXiv preprint
arXiv:1607.08086, 2016.
(18) M. Imani, et al., "Resistive Configurable Associative Memory for
Approximate Co�uting." IEEE/ACM Design Automation and Test in Europe
Conference (DATt.), 2016.
fl 9) J. L. Potter, "Associative Computing: A Programming Paradigm for
Massively Parallel Computers" Springer Science & Business Media, 20 r2.
(20] M. Sharad, ct al., "Ultra low power associative computing with SJ?in
neurons and resistive crossbar memory," IEEE/ACM Design Automation
Conference (DAC}, 2013.
f2 I) C. C. Foster, "Content addressable parallel processors," John Wiley &
Sons, Inc., 1976.
f22] L. Yavits, ct al., "Resistive Associative Processor," Computer Architecture
Letters, 2014.
(23] Caltech library, online at:
"http://www.vision.caltech.edu/lmage _ Datasets/Caltech IO 1/"
(24) Design Compiler, "Synopsys inc," ed, 2000.
(25) R. Ubal, et al., "Multi2Sim: a simulation framework for CPU-GPU
computing," IEEE Parallel Architecture and Compilation Techniques (PACT),
pp. 335-344, 2012.

d��j�J
:i.-a-_ JU.-_ ... , •,..,,,c.01 et-,

(b) Sharpen ..
I

providing acceptable QoS
CAM size Robert Sharpen MatrixMul DwBaarlD

2·row 32-bit 32-bit 24-bit 32-bit

4-row 32-bit 32-bit 24-bit 24-bit

8-row 32-bit 24-bit 16-bit 16-bit

16-row IS-bit 25-bit 16-bit 8-bit

32-row 16-bit 16-bit 8-bit 8-bit

Ii J � � i � � I)
: ,: ...

,-.IH-rol�lt,.\..\I Ke11,
(a) Robert

5. Conclusion
In this paper, we propose a configurable associative
processor (CAP) to address the energy and performance
limitations of current computing systems. The main
contribution of this paper is three fold: i) in contrast to
previous associative processors which naively perform
computation, our design uses adaptive CAM which exploits
data locality and reconfigures the architecture based on the
running workloads ii) CAP changes the architecture from

,- M

1: J_� J_� JJ f: d d d � d J
, L , ,: Mit.,fO Jet. .,,, Ma-

, • ...,.,.,..,,1{,\\I R ... , '•......,.oC''l(;\\JM•u
(c) MatrixMul (d) DwHaarlD

Figure 10. Normalized energy consumption of CAP using SIGAM
in approximate and exact matching.

Table 5 shows the normalized energy saving of CAP in exact
and approximate mode normalized to the ASIC design and
AMD GPU. For each application, we use optimum SIGAM
block size (3-bit) and number ofrows (16-row) which result
in maximum energy saving. Our evaluation shows that
proposed CAP in approximate mode (exact mode) can
achieve S.3x and 9.4>< (4.2x and 7.2><) lower energy
consumption and l.3x higher performance compared to
ASIC and GPU architecture, while ensuing acceptable
quality of service.

Table 5. Maximum energy improvement of CAP in Exact and
. d d ASIC dAMD GPU annroximate mo e comnare to an

Modtl Rob�rr Slrorpe" Mlllri.x I>wHrn,r SOkl Quon Block Normaliud to
ASIC 8.6x 4.0x S.3x 6.lx 4.7x S.lx 3.7x

Approx
GPU IS.Ox 7.0x 9.2.t 10.7x 82' 9.0x 6.Sx

ASIC 6.9x 3.3x 4.0x 5.6x 3.3x 3.7x 2.3x
Ex1et

GPU t2.lx S.8x 7.0x 9.8x 5.8x 6.Sx 4.0x

