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Abstract 
Internet of Things is capable of generating huge amount of 
data, causing high overhead in terms of energy and 
performance if run on traditional CPUs and GPUs. This 
inefficiency comes from the limited cache size and memory 
bandwidth which result in large amount of data movement 
through memory hierarchy. In this paper, we propose a 
configurable associative processor, called CAP, which 
accelerates computation using multiple parallel memory­ 
based cores capable of approximate or exact matching. CAP 
is integrated next to the main memory so it fetches the data 
directly from DRAM. To exploit data locality, CAMs 
adaptively split into highly and less frequent components 
and update at runtime. To further improve the CAP 
efficiency, we integrate a novel signature-based associative 
memory (SIGAM) beside each processing cores, to store 
highly frequent patterns and in runtime retrieve them in 
exact or approximate modes. Our experimental evaluations 
show that the CAP in approximate ( exact) mode can achieve 
9.4x and 5.3x (7.2x and 4.2x) energy improvement, and 
4.lx and l.3x speeds up compare to AMO GPU and ASIC 
CMOS-based designs while providing acceptable quality of 
service. 
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1. Introduction 
In 2015, the number of smart devices around the world 
exceeded 25 billion. This number is expected to double by 
2020 [l]. The rate of data generation by the Internet of 
things (Io1) will quickly overtake the capabilities of current 
computing systems. The need for systems that can 
efficiently handle such large volumes of streaming data is 
undeniable [2]. Several IoT applications, e.g., machine 
learning, are statistic in heart and do not require highly 
accurate computation. Instead of doing all computation 
precisely, by accepting slight inaccuracy, we can get 
significant energy and performance improvements [3]. 
IoT increases the size of application's datasets 
exponentially. Running such large datasets on general 
purpose processors degrades both computation energy and 
performance. The inefficiency is due to limited cache size 
and memory bandwidth of processors which result in a large 
number of data movements through memory hierarchy. [4]. 
Near Data Computing (NDC) is one of the promising 
solution to overcome data movement [5], [6]. NDC locates 
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processing units close to the main memory, such that the 
processor can directly access to DRAM data and avoid the 
memory/cache bandwidth bottleneck. However, adding 
extra dedicated CMOS-based processing units beside 
DRAM may result in additional energy and area overhead. 
Memory-based computing can address the problem by 
performing the computation within memory [7). Ternary 
content addressable memories (TCAMs) in a form oflookup 
table are a good candidate for memory-based computing. 
CAMs in CMOS technology consume a lot of search energy 
and occupy large area of the chip [8]. Low energy 
consumption and high density of non-volatile memories 
(NVMs) open new opportunities to have an efficient 
associative processor [9]. 
To the best of our knowledge, this paper is the first to 
propose configurable resistive associative processor, called 
CAP, which processes the data adaptively considering data 
locality and aware of running workload. CAP performs 
memory-based computation on crossbar CAM blocks beside 
the main memory to avoid large amount of data movement 
between the memory hierarchies. Our design consists of 
several cores where each core is designed based on a CAM. 
Each CAM preforms block-serial search operation (m-bit) 
and addresses endurance issue of resistive CAM by 
eliminating a number of writes. In contrast to all previous 
work which used naive CAMs for computation, CAP 
building block is an adaptive CAM which splits TCAM to 
high and low frequency rows and updates them based on the 
running applications. To fully exploit data locality, we 
enable configurable approximation by utilizing a novel 
signature-based associative memory (SIGAM) beside the 
processing units. Our experimental evaluation shows that 
CAP can achieve 9.4x and 5.3x (7.2x and 4.2x) energy 
savings and 4.1 x and l.3x speeds up compare to AMD GPU 
and ASIC designs while providing acceptable quality of 
service. 

2. Background and Related Work 
Associative memory consists of two main blocks: a TCAM 
and a memory, where a set of input patterns and their 
corresponding outputs are respectively stored [10), [I I], 
[12). When a computation is issued, the operands are 
searched for in the TCAM. If there is a match, the 
corresponding result is returned from the memory [13). In 
CMOS technology, TCAMs are designed using two SRAM 
cells, and so consume a lot of energy for each search 
operation. High density, CMOS compatibility and nearly­ 
zero energy consumption make NVMs appropriate 
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Figure l. Overall structure of proposed CAP 
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candidates for the TCAM design. Resistive RAM (ReRAM) 
and Spin-transfer Torque RAM (STT-RAM) are two types 
of high speed and reliable NVMs based on memristive 
devices and magnetic tunneling junctions (MTJ), 
respectively [14). The endurance of the ReRAM is 106-101 
write operations while for STT-RAMs it is more than 1015 

[15-17). TCAMs with MTJ device have higher endurance, 
and the ReRAM-based TCAMs provide higher search speed 
and area efficiency when utilizing 3D crossbar structure 
which makes them more suitable for low energy associative 
memories. In this work, we use ReRAM but address the 
endurance problem by using a computation strategy that 
does not require frequent write operations. 

Researchers have proposed many different energy-efficient 
techniques that exploit NVM-based TCAMs. Using NVM­ 
based TCAMs next to parallel processors such as GPU can 
provide significant energy savings by reducing redundant 
computation [10], [11], [12), [18]. An approximate 
associative memory using TCAM with voltage overscaling 
was also proposed to relax FPU computation. This idea has 
been extended to a configurable approximate associative 
memory which tunes the level of approximation [18]. 
Although associative memories provide large energy 
savings, they still rely on the computing capability of the 
conventional general purpose processors. Thus, their 
designs cannot efficiently handle large data movement, 
which is the dominant component of energy consumption 
and performance bottleneck in workload parallelization. 

The aim of associative processor is to perform the 
computation by looking up the preprocessed data without 
doing repeated computations [9], [19), [20). Adder (ADD) 
is the main building block of computation. Other basic 
processing units such as subtractor (SUB), multiplier (MUL) 
and divider (DIV) can be implemented using adder. To add 
two n-bit data using associative processor (e.g. A[n .. OJ + 
B[n .. OJ = Sum [n .. OJ + Carry [OJ), we require to store all 
22n input combinations on a lookup table. Meaning that 
comparing the input key with all stored patterns in row­ 
serial manner, requires 0(2n) cycles [21). To improve this 
slow search operation, bit-serial search operation technique 
have been proposed in [9] and [22], where the computation 
can be performed by recalling l-bit adder truth table (8-row) 
n times. In bit-serial technique, a simple n-bit addition and 
multiplications require O(n) and O(n2) to process. However, 

associative processors still have long search latency and 
high energy consumption as discussed below: 

Latency: associative processors using bit-serial search have 
slow search operations, especially for MUUDIV [19]. 
Using I-bit adder block to design multiplication makes 
MUL a computational bottleneck. To address this problem, 
for multiplication we use ADD/MUL LUTs in tree structure 
to get high search speed. In addition, we use block-serial 
search operation which searches for input data in m-bit 
granularity, instead of bit-serial search. 

Energy: Naive computation of current associative 
processors does not consider data locality or type of 
workload in computation. In other words, they consume the 
same amount of energy for an operation independently of 
the input data. However, our associative processor: i) 
considers the data locality and application type in the 
processing units using a configurable CAM, ii) enables 
configurable processor approximation and iii) enables near 
data computing to avoid a large number of data movement. 

3. Proposed CAP Design 
Figure 1 shows the architecture of our proposed 
configurable associative processor (CAP), consisting of 
multiple parallel memory-based cores. CAP can be 
implemented beside the main memory to decrease the 
number of data movements through memory hierarchy. 
Instead of having multiple memory levels, CAP uses a 
shared cache among all processing cores. When application 
starts, a sequencer processor begins fetching instructions 
and data directly from DRAM. Then, scheduler assigns the 
current jobs to appropriate core(s). CAP adaptively 
processes the computation considering data locality and 
running workload. Table 1 shows the parameters of the 
proposed associative processor. Our design contains N 
subcores where each subcore has M banks. Each bank is a 
TCAM-based associative process representing ADD/SUB 
and MUUDIV operations. ADD/SUB processing unit has S 
pipeline stages where each stage stores a lookup table 
corresponding to k-bit basic operation (S=n/k). In 
computation, the carry-out bit of the current stage is used as 
an input bit of the next stage associative memory ( carry-in 
bit). After Sh stage, the stored data in the register shows the 
output of associative processor computation and the carry­ 
out of the last stage represents the overflow bit. 



For example, if20% ofTCAM rows can provide {3=70% hit 
rate, the proposed CAM can achieve -2.3x energy savings 
compared to conventional TCAM. The ratio of HF to LF 

negligible area by implementing a 30 architecture. The area 
of crossbar resistive memory is 4F2/n, where F is the 
minimum feature size and the n is the number of resistive 
layers in 3D. 

(1) TA CAM = P(%) x T11F + (I - P)(%) x (T LF + 7irF) + To.,.ec, 

Figure 2. Structure of adaptive CAM consisting of low and highly 
frequent parts. 

In associative processor the number of TCAM rows 
increases exponentially with the size of input data. 
Conventional TCAMs search for an input data among all 
TCAM rows in a single cycle. This inefficient search 
operation results in large energy and search latency per 
operation. To control the search energy, as Figure 2 shows, 
we split TCAM into two components; high frequency (HF) 
and low frequency (LF) rows. The search operation on 
TCAM stage starts at HF part. In case of a hit in HF, CAM 
stops search and saves energy. This hit can be detected 
using simple combination logic which can logically OR the 
outputs of sense amplifier in HF part. In case of a miss in 
HF, the CAM search continues in the rest of the CAM. Our 
evaluations show that storing a few rows (-20%) in HF part 
can provide very high hit rate (-60-80%) and energy 
savings. For each application, we use profiling to find the 
HF and LF patterns corresponding to ADD/SUB and 
MUUDIV operations. 

To evaluate the energy advantage of propose SCAM, let's 
consider the search delay of conventional CAM as TCAM. 
Splitting the search operation into HF and LF parts 
increases the CAM latency to Tu+Tnr+Toeea. In this 
equation the Tu+T11F<2*TCAM because the search operation 
on small CAM can perform faster. If the input key misses on 
the HF part, it starts searching for an input data in the LF 
part in the second cycle. High percentage of hits in the HF 
part can accelerate the search operation in the SCAM. 
Assume we have /J% hit rate on the HF part. It means that 
fl% of the time we just consume the search energy/latency of 
the HF part. For the rest of {l- fl)% of time, our design 
requires two cycles. The expected latency and energy 
savings of SCAM, assuming T11F + Toetect = TLF , can be 
calculated as: 

Svmbols Descriotion 
N Number ofsubcores ma stage 
M Number of banks of each subcore 
s Number of stages of each subcore 
k Granularity of block-serial search 

SizeCAM CAM rows in each processing units 

3.2. Adaptive CAM 
lo NVM-based TCAMs, values are stored in cells based on 
the NVMs resistance state (Low or High). During the search 
mode, the input operands are compared to all pre-stored 
TCAM patterns and if the data is found, a charged Match 
Line (ML) activates the corresponding line of the resistive 
memory to retrieve the result of computation. We use an 
access-free transistor memory implemented purely by 
memristive devices to design both TCAM and resistive 
memory. Crossbar memory achieves significantly lower 
energy consumption and higher scalability, while occupying 

Instead of doing bit-serial computation, CAP performs 
computation in block-serial way, where each block 
represents a look up table of k-bit addition. In order to get 
high performance MUL/DIV, we use multiplier architecture, 
shown in figure 1 b, which relies on the multiplication and 
adder look up tables in tree structure. The delay of block­ 
serial adder is proportional to the number of available stages 
(O(S) where S=(n/k)). For multiplier, the delay is 
proportional to delay of a k-bit multiplier, and (log(S) times 
of) 2k-bit adder look up table. The ADD and MUL delay 
can be express as TADo=S*Tk and TMuL=Log(S)*Tzk + Tk, 
where T,.. is the delay of an associative memory 
corresponding to m-bit ADD/MUL Lookup table (with 22m+1 

rows). 
3.1. Block Serial Search 
For n-bit computation, the number of stages in 

proposed design, S, depends on the k value in block-serial 
search. Lower k reduces the CAM size, but increases the 
number of required stages and depth of the pipeline. Our 
design searches for input data in k-bit search granularity. 
The CAM needs a list of all possible input data 
corresponding to k-bit adder (containing carry-in bit), where 
each subcore has S=n/k stages. Table 2 shows the energy 
consumption and latency of doing 32-bit ADD and MUL on 
different bit-search granularities. As results show, large k 
increases the computation energy, but speeds up ADD 
computation by decreasing the number of stages. This 
indicates that based on the ratio of ADD/SUB to MUL/DID 
in an application, k=l,2 or 3 bits block can provide higher 
energy-latency point. In Section 4.2.2, we discuss more 
about the impact of the block-serial search operation on 
applications performance and energy. 

Table 2. The energy and latency ofTCAM in different bit 
granularities 

Table I.Design parameters of CAP 

Block size I-bit 2-bit 3-bit 4-bit 
Energy(fJ) 554 692 1378 3473 

ADD/SUB Latencytns) 8.4 7.3 7.9 9.3 
#ofstaxes 32 16 8 4 
Enerl!'VffJJ 1636 1890 2858 5802 

MUUDfV Latencvlns) 6.4 7.8 9.6 12.7 
#ofstaRes 6 5 4 3 
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part of CAM should be set based on the application type. 
Figure 3 shows the search energy consumption of 4-bit 
CAM in different HFILF ratios. In large size CAMs 
(> 32rows), using small HF to LF ratio provides large energy 
savings, while this ratio needs to be higher in small size 
CAMs (e.g. 4-rows, 8-rows). CAP using large block sizes 
(k> 1 ), exploits the data locality to provide higher hit rate, 
energy savings and computation acceleration. 

1.2 

3.3. Signature-Based Associative Memory 
To further improve computation energy while exploiting 
data locality, we propose small size signature-based 
associative memory (SIGAM) next to each processing unit 
which can store high frequency patterns. SIGAM saves 
energy by reducing the redundant computations. In SIGAM, 
a set of frequent pattern and their corresponding outputs 
store on the TCAM and resistive memory (MEM) 
respectively. As Figure 4 shows, before processing data on 
main CAP cores, the input operands compare to a!J pre­ 
stored values in SIGAM. In case of a hit, our design clock 
gates CAP processing units and directly retrieves the 
preprocessed result of computation from MEM block. 
Therefore, the larger SIGAM, the higher average CAP clock 
gating time, thus the higher energy savings. Although, large 
TCAM improves hit rate, TCAM search energy can diminish 
the advantages of using associative memory. 

Figure 5 shows the structure of proposed SIGAM 
consisting of signature TCAM (SIG-TCAM), main TCAM 
and resistive memory. SIG-TCAM first compares the 
signature of the input data with the signature of all pre-store 
values. Then, a hit in the SIG-TCAM selectively activates 
rows of the main TCAM stage. SIG-TCAM significantly 
reduces the search energy consumption of main TCAM by 
reducing the number of active rows in the main TCAM. 
Indeed, instead of searching large main TCAM structure for 
data matching, a pre-search performs on SIG-TCAM to 
reduce the number of active rows on the main block. 
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The optimum number of signature bits depends on the 
application type. In our design, the value of the main TCAM 
and resistive memory can be determined using one-off 
profiling in design time. Therefore, we can find the optimal 
signature bits that have potential to provide lower search 
energy, by optimization. Therefore, we formularized the 
energy consumption of TCAM based on the SIG-TCAM 
and main TCAM energy as follow: 

Figure 5. The architecture of proposed signature-based associative 
memory 

All bits are not appropriate to use as signature bits. To 
select the proper bits, we extract the bit-level distribution of 
the pre-stored values on the main TCAM stage. Then, we 
select m bits which have higher potential to reduce the 
energy consumption ofTCAM. These bits can be selected as 
bits that have bit distribution close to 50%, since each bit 
has potential to deactivate about half of main TCAM lines. 
However, considering the correlation of these bits is 
essential, since they may activate several common rows. 
Although, using more number of bits is likely to decrease 
the number of active rows at the main TCAM, large number 
of signature bits have negative impact on the total search 
energy, since total search energy is the combination of both 
SIG-TCAM and main TCAM: 

The energy consumption of both SIG and main TCAMs 
consist of sense amplifier and precharging energy. In SIG­ 
TCAM, the sensing energy is fixed, while the precharging 
energy increases with the size of signature bits. The total 
main memory energy is the linearly related to the hit of the 
SIG TCAM (n value). Small n value reduces the number of 
the main TCAM active rows. This value depends on the 
signature bit selection. As the input data are not 
deterministic, the a value is the minimum number of SIG hit 

IIO 60 

..,.:o;ormallud CA.\I Enttgy 

?O JO 

l\ormallud DH r:11� 

10 

IIF/LF ratio (",) 

Figure 3. Average hit rate and energy consumption of 4-bit 
associative memory in different HF to LF ratios. 
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4. Experimental Results 
4.1. Experimental Setup 

We compare the efficiency of proposed CAP with CMOS­ 
based ASIC implementation of CAP in RTL and AMD 
Southern Island GPU Radeon HD 7970 device, a recent 
GPU architecture. For experimental simulation, we use 
System Verilog Description Language to design CAP. Then 
use Synopsys Design Compiler (24] to implement it in 45nm 
TSMC technology. For AMD GPU, we use Multi2sim, a 
cycle accurate CPU-GPU simulator (25] for simulation. 
Seven general applications: Robert, Sharpen, Matrix 
Multiplication, Dwliaarl D, Sobel, Quasikandom, 
BlackScholes are used to compare the energy and 
performance of proposed CAP with ASIC and GPU 
architecture. The image processing application has been 
adopted from AMD APP SDK v2.5 in OpenCL to make it 
suitable for streaming applications. The circuit of CAMs are 
designed using HSPICE on 45-nm technology. 

Figure 7. Framework to support CAP: design time profiling and 
runtime reuse. 

systems. We use Caltech 101 computer vision (23] dataset 
provides testing and training data for our image processing 
applications. For other general purpose applications, the 
input dataset has been generated randomly. Training is done 
on l 0% of input patterns, while testing is done on all the 
data. For each application, input patterns are sorted on 
associative memory based on the frequency patterns 
obtained in raining mode (k-bit blocks). The high and low 
frequency patterns update HF and LF parts of CAM 
respectively. CAMs in all compute units are programmed 
concurrently with the same data based on the processing unit 
type. 

To find the proper SIGAM configuration for each 
application, our framework compares the output of running 
an input data on exact and approximate processors. The 
framework continues putting more partial TCAM blocks 
(starting from LSBs at 8-bit granularity) into approximate 
mode as long as the application meets the quality 
requirements as shown in Figure 7. This requirement is 
defined as 30dB PSNR for image processing applications 
and 10% average relative error for other application. 

4.2. CAP Configuration 
4.2.1. CAP Size 

The performance and energy consumption of CAP 

WI optimum signature Its 
Robert Sharpen Matrix DwHaar 

# of SIG bits 4-bit 2-bit 3-bit 4-bit 
SIG hit rate 84% 73% 78% 86% 

Energy savings 73.5% 61.7% 68.6% 72.2% 

SIGW,, 

Figure 6. An example of search operation on the proposed SIGAM 
block 

3.4. CAP Approximation Framework 
Voltage overscaling (VoS) is one of the effective technique 
to improve TCAM search energy and hit rate at the cost of 
accepting inexact matching (18]. TCAM under VoS matches 
the input data with pre-store value with a few bits of 
hamming distances (depending on the voltage level). As the 
least significant bits have lower impact on computation 
result, we apply selective VoS on SIGAM block. SIGAM 
increases TCAM hit rate by allowing the input data to match 
with prestore TCAM values with 1-bit hamming distance in 
selective starting from LSB blocks. Higher hit rate increases 
the average time that the RePUs can be clock gated mode. 
Then, SIGAM returns a preprocessed result of computation 
stored on resistive memory. For each application, our 
framework increases the number of blocks on approximate 
mode till it can ensure acceptable quality of service. 
We present a framework which is compatible with OpenCL 
as a standard for parallel programming of heterogeneous 

when the input data is zero or one. 
We use Genetic optimization algorithm to find the 

optimum SIG TCAM size and bit indices which can provide 
maximum search energy. Our evaluation on four OpenCL 
applications shows that to store 32 most frequent patterns on 
a TCAM, using less than five signature bits is always 
enough to provide optimum energy saving. Table 3 shows 
the optimum number of signature bits and the average 
energy savings that 32-bit, 16-row SIGAM can achieve in 
different applications. Our evaluation shows that using less 
than four signature bits can improve the energy consumption 
of SIGAM -70% in average. Figure 6 shows an example of 
search functionality of 9-bit input data ( 1011001002) in 
SIGAM using 3-bit signature. Conventional technique 
naively searches for an input data in all TCAM rows which 
requires several switching activity. Instead, SIGAM 
architecture starts searching the input data on SIG TCAM 
(4ro, 5th and 7th bit indices of input data). So, the SIG hit on 
the two SIG TCAM rows activate the corresponding lines of 
main TCAM and resistive memory. In-advance row 
activation of the resistive memory allows our design to fast 
read of resistive memory without waiting for precharging. 
Table 3. The search energy consumption ofTCAM using SIGAM 

"th bi 



Figure 8. Performance and power consumption of CAP using 
different number of processing units 
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Figure 9. Energy improvement and performance speed up of CAP 
using different block size. 

! • 
! 
f • e �· 
l: 

.c......, ('..-.. l•GP\) -lllNWt ('--. le MlCl 

Increasing the block size from I-bit, speed up the 
computation by reducing the number of intermediate 
accesses. However, CAM in 4-bit block size has 29=512 
rows, requiring slow and energy hungry input buffer to 
distribute input data among all CAM rows. we consider 
energy-delay product (EDP) as a figure of merit to find the 
best block size. Our evaluation shows that RPU using 3-bit 
block can achieve 4.4x and 23x EDP improvement in 
average compared to ASIC design. In this configuration, the 
CAP achieves 5.9x and 3.4x energy improvement and 4.1 x 
and l.3x speed up compare to ASIC and A.MD GPU. 
4.3. CAP Approximation 

Our evaluation shows that for all applications using small 
size associative memory (8-row or 16-row) results 
maximum CAP energy saving. Figure 10 shows CAP 
normalized energy consumption using proposed SIGAM in 
different sizes. There is a tradeoff between the energy 
consumption of SIGAM and RPU depending on the size of 
the TCAM. A SlGAM with large number of rows increase 
the hit rate and thus the average time that the RPU can be 
clock gated. However, large SIGAM requires slow and 
power hungry buffer to distribute the input signals to all 
rows simultaneously. The delay and energy introduced by 
big buffer prevents searching the entire block in a single 
cycle and degrades the search energy efficiency. In addition, 
the ratio of SIGAM hit rate to search energy cannot further 
improve with increasing the TCAM size because of SIGAM 
hit rate saturation. 
To further improve the CAP processor energy consumption, 
we relax the computation by implementing approximation 
on SIGAM block. Approximate SCGAM reduces the search 
energy consumption of the main TCAM and also improves 
the energy of RPU block. Table 4 lists the portion of 
SIGAM bitline on voltage overscaling using 8-bit relaxation 
granularity, providing less than 10% quality loss. Figure l O 
shows the energy consumption of CAP processor applying 
under SIGAM approximation. Our evaluation shows that 
SIGAM can improve the CAP energy consumption by 

the search operation by reducing the number of intermediate 
access. 
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4.2.2. Block-Serial Search 
As we explained in Section 3.1, in CAP the search 

operation performs in block serial approach. In ADD 
operation, the computation starts by looking up the k bit data 
in the first associative memory stage, containing 2at1 rows. 
For looking up the second k bits, we need to use a carry out 
bit of the first block as an input of the second stage. This 
means that the search operation on the next associative 
memory stage starts by reading the carry-out bit of the 
current stage. These dependencies slow down the serial 
search operation. To compensate such slow search, CAP 
needs to use large blocks because in block-serial, CAP does 
not wait for intermediate stages to read the carry bit. 

Figure 9 shows the energy and performance 
improvements of CAP using different block size compared 
to ASIC and GPU architecture. CAP consumes significantly 
lower energy consumption compare to both designs. 
Although larger block decreases the number of stages 
linearly, the CAM size in each stage grows exponentially 
with the block size. Thus, CAP using larger block speeds up 

.111111/ 2 J ... S i J j • i 
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depend on the number of processing units. As Figure 8 
shows, the energy consumption of CAP grows Linearly with 
the number of processing units. However, large number of 
processing units improves CAP performance by increasing 
parallelism. In our design two factors can limit the number 
of RPUs in CAP: i) power density considering chip thermal 
design. This power is 300W for recent parallel processors 
such as AMD GPUs. ii) Area occupation of the CAP. High 
density of crossbar non-volatile CAMs (8F2/n) and resistive 
memories (4F1/n) allows integrating associative memories in 
30 structure, where Fis feature size and n is the number of 
vertical layers. For n=I, this integration allows putting 3K 
RPU on a same silicon area as floating point units in AMD 
GPU which contains 32 computing units, where each has 4- 
SIMD and each SIMD contain 16 lanes (2048 streaming 
cores). The RPU density increase by extending the number 
of vertical layers. However, using more than 5-layers slows 
down the computation and exceeds 300W thermal design 
power. Therefore, a CAP processor can achieve 15K RPUs 
which is 6x larger than the number of processing units in 
AMD southern Island GPU, a most recent GPU architecture. 
Figure 8 shows the performance and the power consumption 
of the CAP compare to A.MD GPU. As graph shows, the 
CAP performance increases linearly with the number of 
processing cores up to 6.1 TFLOP/s using l5K RPUs 
integrated in 5 vertical layers. 
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average 32% and 49% in exact and approximate modes 
providing less than 10% quality loss. 

Table 4. Maximum portion ofSIGAM in approximate mode while 

slow bit-serial search to block-serial search operation to 
speed up the search process iii) our design relaxes the CAP 
computation by applying configurable approximation 
starting from least significant bits. Our experimental 
evaluations show that the CAP processor in approximate 
(exact) mode can achieve 9.4x and 5.3x (7.2>< and 4.2x) 
energy savings and 4.1 x and 1.3 x speeds up compare to 
AMD GPU and ASIC designs while meeting target quality 
requirement. 
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5. Conclusion 
In this paper, we propose a configurable associative 
processor (CAP) to address the energy and performance 
limitations of current computing systems. The main 
contribution of this paper is three fold: i) in contrast to 
previous associative processors which naively perform 
computation, our design uses adaptive CAM which exploits 
data locality and reconfigures the architecture based on the 
running workloads ii) CAP changes the architecture from 
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Figure 10. Normalized energy consumption of CAP using SIGAM 
in approximate and exact matching. 

Table 5 shows the normalized energy saving of CAP in exact 
and approximate mode normalized to the ASIC design and 
AMD GPU. For each application, we use optimum SIGAM 
block size (3-bit) and number ofrows (16-row) which result 
in maximum energy saving. Our evaluation shows that 
proposed CAP in approximate mode ( exact mode) can 
achieve S.3x and 9.4>< (4.2x and 7.2><) lower energy 
consumption and l.3x higher performance compared to 
ASIC and GPU architecture, while ensuing acceptable 
quality of service. 

Table 5. Maximum energy improvement of CAP in Exact and 
. d d ASIC dAMD GPU annroximate mo e comnare to an 

Modtl Rob�rr Slrorpe" Mlllri.x I>wHrn,r SOkl Quon Block Normaliud to 
ASIC 8.6x 4.0x S.3x 6.lx 4.7x S.lx 3.7x 

Approx 
GPU IS.Ox 7.0x 9.2.t 10.7x 82' 9.0x 6.Sx 

ASIC 6.9x 3.3x 4.0x 5.6x 3.3x 3.7x 2.3x 
Ex1et 

GPU t2.lx S.8x 7.0x 9.8x 5.8x 6.Sx 4.0x 


