
Efficient Query Processing in Crossbar Memory
Mohsen Imani, Saransh Gupta, Atl Arredondo and Tajana Rosing

CSE Department, UC San Diego, La Jolla, CA 92093, USA
{moimani, sgupta, ararredo, tajana}@ucsd.edu

Abstract—Today’s computing systems use huge amount of
energy and time to process basic queries in database. A large
part of it is spent in data movement between the memory
and processing cores, owing to the limited cache capacity and
memory bandwidth of traditional computers. In this paper, we
propose a non-volatile memory-based query accelerator, called
NVQuery, which performs several basic query functions in
memory including aggregation, prediction, bit-wise operations,
as well as exact and nearest distance search queries. NVQuery
is implemented on a content addressable memory (CAM) and
exploits the analog characteristic of non-volatile memory in order
to enable in-memory processing. To implement nearest distance
search in memory, we introduce a novel bitline driving scheme
to give weights to the indices of the bits during the search
operation. Our experimental evaluation shows that, NVQuery can
provide 49.3× performance speedup and 32.9× energy savings
as compared to running the same query on traditional processor.
In addition, compared to the state-of-the-art query accelerators,
NVQuery can achieve 26.2× energy-delay product improvement
while providing the similar accuracy.

I. INTRODUCTION

Data management systems (DMS) are the standard tools
for collecting and serving large amounts of information for
web applications and end users. Over the past decade, data
generation has grown exponentially due the diversity of col-
lection sources [1], [2]. In addition, organizations collect large
amounts of information for decision making and business
analytics [3]. In the majority of scenarios, the execution time
of DMS queries tends to increase linearly and sometimes
exponentially as more records are stored in a single server
instance. This has been one of the main challenges of DMS
and its caused by the the hardware and software co-design
limitations [4].

In the hardware aspect, several efforts have been made
to accelerate computation by paralleling operations on a co-
processor or GPUs [5], [6]. However, in most cases data
movement has been a bottleneck due to the fact that large
amounts of information tend to reside on slow storage devices
such as disks. In most Structured Query Language (SQL)
accelerator studies, this data overhead is not taken into account
and as a consequence their results do not show a valuable
improvement over general designs [7]. On the other hand,
softwares have been developed to adapt to the nature of
particular tasks. In the case of interactive data analysis, the
focus is often less on exactness of the result and more on
timeliness or responsiveness, which gives us the opportunity
to approximate the result within a margin of error in order to
accelerate the SQL query computation [4]. Query processing
slows down significantly when running on the large data sets
provided by connected devices. Data movement is the main
bottleneck of current computing systems wherein the size
of data increases over the cache capacity of the processing
core [8]. Limited memory bandwidth makes the condition

worse as data is delayed each time the main memory is
accessed.

Near data computing and processing in-memory (PIM) are
two efficient techniques which improve the cost of query
processing [9]. Near-data computing puts the computing units
close to the main memory, in order to avoid data movement
cost in computation [10]. Although this technique improves
the computation efficiency, it has some challenges including:
(i) cost of large CMOS-based computing unit and (ii) cost
of integrating the memory and logic in a single chip. The
introduction of non-volatile memories has made it possible to
process data in the memory itself, resulting in the concept
of PIM [11], [12], [13], [14]. Resistive RAM (ReRAM) is
one such memory and enjoys the benefit of low energy, high
switching speeds, high density, and scalability. PIM processes
data within memory, eliminating the need for integration
between large processing cores and the memory. However, the
existing PIM techniques support only simple functions like
bit-wise or search operations [15], [16]. Not only it is too
cumbersome to break down a simple query function like search
into a series of bit-wise computations but it also minimizes
the benefits of using PIM. To the best of authors’ knowledge,
this paper is the first attempt to implement an efficient PIM
based query processor which supports a wide range of query
functions.

In this paper, we propose a novel non-volatile, memory-
based query processing accelerator, called NVQuery, that
supports several query functions within a memory instead of
processing them in traditional core. NVQuery supports wide
range of query functionalities including aggregation functions,
prediction functions, bit-wise operations, addition, exact and
nearest distance search operation. The configurable crossbar
memory structure of our design supports these functionalities
inside the memory. It exploits the analog characteristic of non-
volatile memory to also enable the nearest distance search
capability. Our experimental evaluation on SQL queries shows
that, compared to the state-of-the-art query accelerators, NV-
Query can achieve 26.2× energy-delay product improvement
while providing similar accuracy.

II. RELATED WORK

Several efforts have been made in order to accelerate DMS
querying by using specialized hardware. GPUs in particular
have been widely used to parallelize the ’SELECT’ SQL
queries with results that range from 20x to 70x speed up
[17]. However, they do not take into consideration the data
movement overhead of these tasks and assume only the
computation cost. In addition, it has been demonstrated that
the bandwidth and cache capacity of GPU devices are the
main bottlenecks of database computations. For instance, work
in [18] examines multiple GPU systems and acknowledges that

978-1-5090-6023-8/17/$31.00 c©2017 IEEE

Column Driver/Buffer

Query Controller

Cnt RegQuery KeyQuery Result

R
o

w
 D

r
iv

e
r

MUX

LG

Input Query

FIFO

Register

Crossbar

Mem

Bank 1

k×

block
Register

Crossbar

Mem

Bank 3

Register

Crossbar

Mem

Bank N

Operations

Controller

Shared Cache

DRAM NVQuery

Core 1 Core 2 Core N

Main Processor

C
A

M
 S

A

Memory SA

Register

Crossbar

Mem

Bank 2

Configuration Function
CAM
Input

CAM SA Memory SA Comment

Nearest
Search

MIN Least Nearest NA L: Least possible value

MAX Greatest Nearest NA G: Greatest possible value

TOP K IQ (FIFO) Nearest NA Requires k iterations

Search
Exact

Search
IQ (FIFO) Exact NA IQ: Input query

Memory

Bitwise NA NA AND/OR CAM input: Bitline driver

Memory NA NA MEM CAM input: Bitline driver

Addition NA NA MAJ CAM input: Bitline driver

NVQuery Configuration

Fig. 1. Proposed NVQuery architecture with N banks and k blocks, crossbar implementation of memory banks, and supported configurations.

unless the full working set of data can fit into the memory on
a GPU, PCI Express bus will be a bottleneck.

As a consequence, researchers have worked on optimizing
the data movement through memory. In the areas of dis-
tributed computation, Al-Kiswany et al. describe StoreGPU,
a distributed storage system that uses pinned, non-pageable
memory on the host system to reduce the impact of data
transfer [19]. Gelado et al. in [20] introduce an asymmetric
distributed shared memory that defines two types of memory
updates which determine when to move data on and off the
GPU. These optimization efforts only focus on conventional
memory technologies and the computation still occurs on
computing units. A query service by Google called, BigQuery
is capable of searching through petabytes of data [21]. The
latency is minimized by paralleling queries over multiple
servers and columnar storage of data over multiple memo-
ries or memory banks. However, this distribution of queries
and data results in huge energy requirements. Also, it does
not support data manipulation queries and has huge latency
bottleneck with updating data.

Approximating the results of SQL query has been used
to reduce the required waiting time by producing results
within acceptable error bounds. The most famous querying
framework based on approximation is sampling-based approx-
imate querying (SAQ) [22], [23], where the computation is
performed over a small random subset of the data. The error
in the estimate is specified using a confidence interval or
error bars. However, SAQ suffers from several shortcomings
such as ignoring the tails of the data and being useless to
complex queries. Poti et al. [4] proposes deterministic approx-
imate querying (DAQ) schemes that formalize a determinist
approach to approximate the results by taking advantage of
the bit value representations. Their approach reads the table
records, starting from the most significant bit, one by one
and adjust deterministic error bounds with respect to the
bits not seen yet. Also, DAQ evaluations confirm efficient
approximation giving estimates with less than 1% error with
a speedup of 6x for SQL predicate queries and 2-4x for
aggregation.

In contrast, in this paper we propose a novel computer
architecture which completely addresses the data movement
issue of the query processing systems by doing computations

TABLE I
NVQUERY SUPPORTED FUNCTIONALITIES

Notation Functions
Aggregation F(SI)→ SO MIN, MAX, Average, Count

Bit-wise Operations F(SI)→ SO AND, OR, XOR (Combination of AND, OR)
Addition F(SI)→ SO In-memory addition

Comparison = ≤ ≥ Bit-wise and value-wise comparison
Predict p Exist, Search condition, Top

inside the memory.

III. NVQUERY ACCELERATOR

A. Overview of NVQuery Architecture

Fig. 1 shows the general architecture of the proposed
NVQuery. The proposed NVQuery integrates with DRAM and
enables the main processor to accelerate query processing.
NVQuery can also be used as a secondary storage to improve
the effective DRAM capacity. NVQuery consists of N banks,
where each has k memory blocks.Each memory block can be
configured as memory or query accelerator.

Our design is a heterogeneous architecture, where the NV-
Query co-operates with main processor in order to find the
query result. In NVQuery, each memory block returns a result
of the query, independent from other blocks. Therefore, to find
the result of a query in the whole data set, the main processor
receives output response of each memory block (a total of
N× k values instead of the entire data). Finally, it processes
data to find the result of query over entire data set. In this
way, the load on memory bandwidth due to query processing
and its related costs are significantly reduced.

B. Supported Functionalities

In this section, we describe the functions supported by the
proposed non-volatile query processor, called NVQuery. NV-
Query can support several essential query processor functions
inside the memory and avoid costly data movement across
memory hierarchy. Table I lists the NVQuery support function-
alities. NVQuery supports a large number of essential func-
tions including aggregation (MIN, MAX, Average, SUM
and Count), comparison (equality or non-equality), and
boolean (such as AND, OR). In addition, NVQuery can process
prediction functions such as Exist and Top in memory.

We map all query functionalities explained in Fig. 1 to
NVQuery which can work in three main configurations: (i)
look-up table (LUT) with capability of exact search, (ii)
nearest distance search, and (iii) memory. We propose a new
memory architecture which can process data locally without
reading it. In each of these configurations, our design processes
query operations without approximating the result. In the
following subsections, we explain how each query operation
can be supported in memory.

1) Exact Search: The most common operation in many
query processors is looking up for a set of data which matches
with input query. A typical search query involves a brute-
force search through a LUT till the data is located. This is
usually implemented in one of the two ways, (i) word-by-
word search and (ii) bit-by-bit search. A word-by-word search
looks through every stored word in the LUT sequentially and
finds a match. In the worst case, it involves processing each
and every element present in the LUT. The bit-by-bit search
scans through one bit (but same index) for multiple words at a
time. The first iteration analyses a particular bit index of every
word in the LUT, looking for a match with the corresponding
entry in the input query. The following iterations are performed
only on the words filtered by previous iterations. This approach
does not analyse all the elements since the size of candidate
pool decreases after each iteration. The exact search operation
supports Exist, Search functions and is further ex-
tended to implement Count function in the query processor.
The Count output is given by the number of hits for an exact
search query. Our design adds a counter block to NVQuery in
order to support this query.

2) Nearest Distance Search: NVQuery can be configured
to perform the closest distance search operation inside the
memory. The bit-by-bit search described above can be used to
implement this functionality. Here, the nearest data is the one
which remains selected for the maximum number of iterations.
Our design exploits this functionality to support aggregation
functions like MIN and MAX and prediction functions like
Top k. Running these queries on traditional core has a
time complexity of O(logn). However, our hardware can find
MIN, MAX queries in a single cycle and Top k in k cycles.
MIN: This query runs on a set of stored data to find the

minimum value. To perform this query in LUT, NVQuery
block adopts the nearest distance search configuration and
searches for the data which has the closest distance to the
minimum possible value. Fig. 2 shows an example of running
MIN query in nearest distance LUT for unsigned numbers. Our
design searches for an entry which has the closest distance to
zero. In the case of signed values, this number is the largest
possible negative number (single one followed by a chain of
zeros).
MAX: As shown in Fig. 2, to find the data with the maximum

value, we search for the entry which has the least distance from
the largest positive number. For unsigned values, the largest
value is a chain of ones (1111...1), while in the case of signed
numbers, this value is represented by a zero followed by a
chain of ones (0111...1).
Top k: To search for k values closest to the input data,

we perform the nearest distance search for k iterations. After
each iteration, our design deactivates the selected word and
repeats the nearest distance search on the remaining words.
This approach gives a set of k nearest values arranged in the

order of their proximity to the input. Our design also supports
bit-wise/value-wise comparison by searching for the exact and
nearest values.

3) Bit-wise Operations and Addition: A traditional proces-
sor implements bit-wise logic operations in the main core.
The operands are fetched from the main memory and brought
through the memory hierarchy all the way up to the core. The
core then performs the required computations. On the other
hand, our design implements these operations in the memory
itself, avoiding the need to transfer data from memory to the
computing core. For executing these operations, NVQuery is
set into memory configuration and the output is obtained from
memory SA. This operation can support the following queries:
AND, OR, XOR and Average. Note that our design sup-
ports average query by using a counter and sending the data
to main processor.

IV. HARDWARE SUPPORT

This section explains the hardware implementation of NV-
Query and the way in which it supports the functions described
in Section III-B. NVQuery is designed using a crossbar non-
volatile memory architecture. The crossbar is configured in
such a way that a set of two storage elements in the crossbar
corresponds to one bit data. Data 0 is stored as {RHIGH
RLOW}, while 1 is stored as {RLOW RHIGH}. However, our
architecture does not use any access transistors for these
elements, hence called 0T-2R. Implementations like 2T-2R
require access transistors. This makes the design unsuitable
for a crossbar memory, reducing the area density benefit of
non-volatile memories. Moreover, the presence of transistors
introduces non-linearity to the system. On the other hand, 0T-
2R doesn’t need access transistors and can be implemented on
a conventional crossbar memory, making it more area efficient.

As shown in Fig. 1, the crossbar memory in NVQuery
is supported by many peripheral components. The controller
receives the input query and generates the appropriate con-
trol signals. It is also responsible for collecting the output
of the block and forwarding it for further processing. The
multiplexer, controlled by the controller, selects the inputs
which drive the bitlines of the crossbar memory. These can
be data from input query (in case of search operations) or
greatest (corresponding to MAX where bitlines are driven by
the largest positive number) or least (corresponding to MIN).
The column driver drives the bitlines of the crossbar. It not
only provides the execution voltages for different operations
but also maps the input query to the required bitline voltage
levels. Row driver is responsible for charging wordlines (also
called match-lines due to the nature of operations). It is
also responsible for selecting/activating different words, for
example word selection after a bit-by-bit search iteration. It
also provides a limited set of voltage options essential to
the working of crossbar. The crossbar is equipped with sense
amplifiers (SAs) on both the wordlines (CAM SA) and the
bitlines (memory SA). Fig. 3 shows these SAs. The CAM
SAs are responsible for detecting charging and discharging
behaviors of wordlines. The nMOS-capacitor circuit acts as a
latch. The inverter-diode-NOR circuit deactivate the wordlines
as soon as the first edge is detected or the sampling signal for
Exact is set. As a result, the latch is set only for the wordlines
which discharge before this deactivation. The memory SAs are
buffers with special resistors to support bit-wise and memory

01

0 0.8V

01

0.8V 0

I3 I301

0 0.8V

01

0.8V 0

I3 I3 01

0 0.4V

01

0.4V 0

I2 I201

0 0.4V

01

0.4V 0

I2 I2 01

0 0.2V

01

0.2V 0

I1 I101

0 0.2V

01

0.2V 0

I1 I1 01

0 0.1V

01

0.1V 0

I0 I001

0 0.1V

01

0.1V 0

I0 I0

0 0 1 1

1 0 1 0

1 1 1 0

0 0 1 0

1 0 0 0

0 0 0 1

MAX OPERATION

0 0 1 1

1 0 1 0

1 1 1 0

0 0 1 0

1 0 0 0

0 0 0 1

MIN OPERATION

Fig. 2. NVQuery in nearest distance search configuration, the corresponding
discharging characteristics, and MAX and MIN operations.

ML
EnL

i
N+1

EnL
i+1

N+1

ClK

Detector

Row Driver

ML
EnL

i
N

EnL
i+1

N

ClK

CAM SA

Memory SA

R>1

RMEM

En

AND

R>0

OR

MEM

R>2

MAJ

R>1

RMEM

En

AND

R>0

OR

MEM

R>2

MAJ

MEM

OR

AND

MAJ

Exact

Fig. 3. Circuit level implementation of CAM SA, Memory SA, and Row
Driver.

operations as described in Section IV-C. We now explain the
way in which NVQuery enables different functions discussed
in Section III-B.

A. Exact Search
To implement the LUTs discussed in Section III-B1, NV-

Query uses content addressable memory (CAM) configuration
of crossbar. Fig. 3 shows the structure of non-volatile crossbar
CAM, capable of searching for stored data which exactly
matches the input query. During search operation, all the
match-lines (MLs) pre-charge to Vdd . The input buffer (column
driver) distributes the query point to all CAM rows using
vertical bitline. Any cell with the same stored data as input
query discharges the ML. The sense amplifier, connected to
the horizontal ML, determines the equality of the input and
stored data by sampling the ML voltage.

B. Nearest Distance Search
CAM has been extensively used to implement search op-

erations. Different versions of CAM implementations (e.g.
TCAM) on different types of hardware (crossbar, 2T-2R, 3T-
1R, etc.) have been active topics of research recently. However,
majority of the previous work revolves around exact and near-
est hamming distance search operations. Hamming distance is
a good criterion when considering hyper-dimensional vectors
where the index of a bit does not matter. Only the face value
of a bit and the total number of mismatches between the stored

data and the input query are considered. Such a comparison
is not practical for many real life applications where a query
to the processor is dependent on the binary weighted values
of the stored data.

To support such queries, some researchers have proposed
the division of a memory block into stages [24]. In such an
architecture, the first m most significant bits of data are stored
in the first stage, the next m significant bits in the second stage
and so on. Then, a search is performed sequentially, starting
from the first stage. The output of a stage selects the rows to
be activated in the following stage. This increases the weight
of the initial stages with respect to the later stages. However,
the m bits in a stage are treated as having the same binary
weight. This leads to inaccurate results in many cases. In this
work, we address this issue by introducing a new method to
assign binary weights to the bits within a stage.

For a search in conventional CAM, the match-lines (MLs)
are pre-charged to Vdd and then bitlines are driven with Vdd or
0 depending upon the input query. The MLs of rows with more
number of matches discharge earlier. The line to discharge first
is the one with minimum mismatch with the input query. To
give binary weight to the bits, we modify the bitline driving
voltage. Suppose a stage contains m bits (m− 1 : 0). The
bitlines which were earlier driven with Vdd and now driven
with a voltage Vi = Vdd/2(m−1−i) where i denotes the index
of a bit in the stage. Fig. 2 shows CAM in nearest search
configuration for a stage size of 4 bits. As shown by our
results, a match in the most significant bit results in faster
ML discharging current than lower indices. We exploit this
difference and design a CAM which can find the binary value
nearest to the input query.

However, as the number of bits increases, the bitline voltage
Vi becomes very small. We limit the minimum available
voltage source output to 100mV . Moreover, the maximum
voltage that can be applied is limited by the threshold voltage
of the non-volatile elements. This ensures that the data in the
memory is preserved. This upper bound is set to 1.8V . Hence,
the allowable voltage levels include 0.1V,0.2V,0.4V,0.8V and
1.6V , restricting the stage size to 5 bits. In this work, we split
the CAM into multiple stages of 4-bits each for simplicity and
then search for the nearest distance row in a serial manner,
starting with the stage containing the most significant bits.

C. Bit-wise Operation and Addition
Although a search based CAM can accelerate several func-

tionalities in NVQuery, it cannot support a major part of
queries such as addition, average, and all bit-wise operations.
In order to make NVQuery a general design for query pro-
cessing accelerator, we modify the sense amplifiers in the
vertical bitlines to support bit-wise operations. Fig. 2 shows the
sense amplifier in a single NVQuery bitline to support bit-wise
operations. In this mode, each block works as memory instead
of CAM, where one of the vertical bitlines in each CAM cell
is activated. The tail of the shared bit-line is connected to
a sense amplifier. Since our design supports AND and OR
functions, the sense amplifier has two main parts: one for AND
operation and a simple sense amplifier to support OR. These
circuits work on the basis of the leakage current through the
vertical bitline. When several rows in memory are active, each
row leaks current through vertical bitlines depending upon the
resistance value. If the stored bit is 1 (low resistance), this

TABLE II
APPROXIMATION IN 16-BIT ADDITION

Approximated Bits 4 8 12 14 16
Error (%) 0.006 0.098 1.56 6.25 25

Energy (pJ) 3.52 2.41 1.3 0.75 0.197
Latency (ns) 182 133 84.7 60.5 36.3

current is large, while in the case of 0, leakage is significantly
small. The goal of OR operation is to identify the presence of
at least one high (1) bit in all activated rows. Therefore, we
use a special resistor such that in the case of at least single
high bit, it turns the output signal to one. However, for AND
operation the goal is to find a case such that at least one input
is not 1. In that case, the AND circuitry uses an appropriate
sense resistance.

Interestingly, prior work shows that crossbar memory can
further support addition within the memory [25], [26]. This
approach breaks down an operation into a series of NOR
operations. The logic family used in the paper executes NOR
in crossbar memory with a latency of just 1 cycle. This
functionality is supported by NVQuery due to its regular
structure (unlike CAMs with access transistors), enabling it
to perform data computations within memory. This addition
can be partly implemented to support XOR. In the case when
approximate results are acceptable, the sense amplifier at the
bitlines can be used to improve the performance of NVQuery.
The truth table for 1-bit full adder shows that the sum bit
(S) can be obtained by inversion of the carry bit (C) in 75%
of the cases. The sense amplifier calculates C (majority) in
one step by simply using an appropriate sense resistance.
S is obtained by inverting C. This introduces a worst case
error of 25%. However, this error is reduced significantly by
approximating only some LSBs depending upon the level of
accuracy desired. The MSBs are calculated accurately using
the techniques described in [25]. Table II shows the error
corresponding to different number of approximated bits for
an 8-bit addition. By calculating the carry bit correctly, the
proposed approximation approach limits the effect of an error
to one bit and does not propagate it.

Addition is extended to implement average function. The
output of successive additions is sent to the processor, where
the average is obtained by bit-shifting or simple division.

V. EXPERIMENTAL RESULTS

A. Experimental setup
For detailed evaluation of the proposed NVQuery, we

run circuit-level simulations in HSPICE with 45nm TSMC
technology. We use VTEAM [27] model of memristors with
ION/IOFF ratio of 103 for non-volatile memory crossbar
design. We develop software-based cycle-accurate simulator
(based on C++) which emulates the functionalities of the
designed NVQuery. This allows us to speed up the simulation
time significantly and verify the proposed design with diverse
practical data sets. The simulator exploits accurate models of
the hardware, e.g., time and power extracted from the afore-
mentioned circuit-level simulation to evaluate the efficiency
of the proposed design. We compare NVQuery performance
and energy efficiency with with state-of-the-art query process-
ing approaches running on the same technology node. We
evaluate two popular approaches, sampling-based approximate

10G8G6G4G2G1G
10

0

10
1

10
2

10
3

Data Set Size

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

NVQuery

CPU Intel i7 7600

10G8G6G4G2G1G
10

0

10
1

10
2

10
3

10
4

Data Set Size

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

NVQuery

CPU Intel i7 7600

Fig. 4. Energy consumption and performance of query processing running
on traditional core and the proposed NVQuery.

querying (SAQ) [23] and deterministic approximate querying
(DAQ) [4] on Intel i7 7600 CPU with 8GB memory. For
measurement of the processor power, we use Hioki 3334
power meter. We use a dataset consisting a table of Census of
10 million tuples using 32-bit unsigned integers to compare the
efficiency of different techniques. This data is popularly used
to model populations of various kinds ranging from cities and
organizations to word frequencies in natural language corpora.
The SQL server contains a single table with one 10GB column
of randomly generated records. In the rest of the paper, power
and performance results have been reported for 1000 queries
from aggregation and prediction functions over five randomly
generated datasets.

B. NVQuery Efficiency
Here we highlight the advantage that NVQuery can provide

in computing each query function. Table III compares the
energy savings and performance speedup of running different
queries on proposed NVQuery as compared to a digital ASIC
design. Each energy is reported when 10 queries run on 1k
dataset. The selected dataset is small so that the reported val-
ues compare the computation energy without data movement
cost. The digital system is designed using System Verilog in
45nm ASIC flow. The result shows that NVQuery improves
the computation cost of all queries significantly. Specifically,
queries such as MAX, MIN and/or TOP k can be processed
in a single cycle, instead of processing in O(n) or O(logn)
time. Our evaluation shows that our design can provide 11.8×
energy improvement and 26.85× performance speedup on
average compared to digital approach for nearest distance
search-based queries. Similarly, our design can achieve on
average 13.7× and 92.1× (5.8× and 0.9×) energy savings
and performance speedup over exact search (memory func-
tionalities, e.g. addition). Although, the performance of in-
memory addition is less than that of digital-based design, but
considering the cost of data movement, it makes sense to
process data locally in-memory. In large size query processing,
the data movement dominates the computation cost, which
motivates us to perform in-memory computations to avoid data
movement issue.

We also compare the efficiency of the proposed NVQuery
with the state-of-the-art query accelerators SAQ [23] and
DAQ [4] using 8G dataset size. We select those configurations
of SAQ and DAQ which result in the best EDP improvement.
Our experimental evaluation shows that, NVQuery can achieve
105.0× and 26.2× EDP improvement as compared to SAQ
and DAQ designs in exact mode. The main advantage of
NVQuery comes from addressing data movement issue.

C. NVQuery & Dataset Size
While running real dataset, the main advantage of NVQuery

comes from addressing the data movement issue. Fig. 4 shows

TABLE III
ENERGY CONSUMPTION AND PERFORMANCE SPEEDUP OF QUERIES IN

NVQUERY NORMALIZED TO DIGITAL DESIGN OVER 1K DATA

Nearest search Search Memory

Queries
MAX/
MIN Top 1

Search/
Count

Addition/
Average Bit-wise

Energy Improv. 9.5× 14.1× 13× 5.8× 46.7×
Speedup 24.2× 29.5× 92.1× 0.9× 122.6×

Search

2.1%

C
o

u
n

te
r

 0

.3
%

Bitwise

1.5%

Controller &

Reg 1.2%

Fig. 5. Area overhead as compared to conventional crossbar memory

the average energy consumption and performance of running
query processing on traditional core and NVQuery when the
data set size changes from 1GB to 10GB. Our evaluation
shows that the NVQuery has higher advantage in processing
the nearest distance search and related functions such as
MIN, MAX or Top queries. However, to see the average
NVQuery improvement, we generate the same amount of
queries running on the dataset. Our evaluation shows that
increasing the data size significantly increases the energy and
execution time of traditional cores. However, this increment
is minor in NVQuery as it can locally process the data. As
our result in Table III shows, NVQuery not only avoids the
overhead of data movement, but also provides much cheaper
computation than traditional cores. This difference is more
prominent when the size of the dataset passes 8GB, which is
the available main memory size in our tested platform. In such
case, the traditional cores require to bring data up from the
hard disk, which significantly slows down the computation.
Comparing the energy and performance of NVQuery for 10G
data shows that, our design can achieve 34.7× energy savings
and 49.3× performance speedup as compared to traditional
processor running the same query tasks.

NVQuery has both memory and query processing func-
tionalities. We added peripheral circuitry to crossbar mem-
ory to support nearest distance exact search operation, bit-
wise/addition operations, counter and controller. Fig. 5 shows
that proposed NVQuery has up to 5.1% area overhead com-
pared to the conventional crossbar. The search circuitry takes
2.1% extra area. Counter and bit-wise circuits add 0.3% and
1.5% area overhead to design. Finally, the controller and
registers take the rest 1.2% area overhead.

VI. CONCLUSION

In this paper we propose a novel memory architecture which
can accelerate query processing inside the memory. NVQuery
supports a large range of query functionalities inside the mem-
ory. Our design exploits the analog characteristic of the non-
volatile memory to design a configurable memory architecture
which can look for exact or nearest distance values. Our
result shows that NVQuery not only improves the cost of
each query processing, but also completely addresses the data
movement issue by locally processing the data in memory.

Our experimental evaluation shows that, in comparison with
the state-of-the-art query accelerators, NVQuery can achieve
26.2× energy-delay product improvement while providing
similar accuracy.

VII. ACKNOWLEDGMENT

This work was supported by NSF grant #1527034 and
Jacobs School of Engineering UCSD Powell Fellowship.

REFERENCES

[1] J. Gubbi et al., “Internet of things (iot): A vision, architectural elements,
and future directions,” Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] M. Chen et al., “Big data: a survey,” Mobile Networks and Applications,
vol. 19, no. 2, pp. 171–209, 2014.

[3] H. Chen et al., “Business intelligence and analytics: From big data to
big impact.,” vol. 36, no. 4, pp. 1165–1188, 2012.

[4] N. Potti et al., “Daq: a new paradigm for approximate query processing,”
VLDB Endowment, vol. 8, no. 9, pp. 898–909, 2015.

[5] M. Imani et al., “Acam: Approximate computing based on adaptive
associative memory with online learning,” in ISLPED, pp. 162–167,
2016.

[6] M. Samragh et al., “Looknn: Neural network with no multiplication,”
in DATE, IEEE, 2017.

[7] C. Gregg et al., “Where is the data? why you cannot debate cpu vs. gpu
performance without the answer,” in ISPASS, pp. 134–144, IEEE, 2011.

[8] J. LeFevre et al., “Miso: souping up big data query processing with a
multistore system,” in SIGMOD/PODS, pp. 1591–1602, ACM, 2014.

[9] S. H. Pugsley et al., “Comparing implementations of near-data comput-
ing with in-memory mapreduce workloads,” IEEE Micro, vol. 34, no. 4,
pp. 44–52, 2014.

[10] R. Balasubramonian et al., “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[11] M. Hoseinzadeh et al., “Reducing access latency of mlc pcms through
line striping,” ACM SIGARCH Computer Architecture News, vol. 42,
no. 3, pp. 277–288, 2014.

[12] M. Hoseinzadeh et al., “Spcm: The striped phase change memory,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 12,
no. 4, p. 38, 2016.

[13] M. Saremi, “Carrier mobility extraction method in chgs in the uv light
exposure,” Micro & Nano Letters, vol. 11, no. 11, pp. 762–764, 2016.

[14] N. Khoshavi, S. Salehi, and R. F. DeMara, “Variation-immune resistive
non-volatile memory using self-organized sub-bank circuit designs,” in
Quality Electronic Design (ISQED), 2017 18th International Symposium
on, pp. 52–57, IEEE, 2017.

[15] M. Imani et al., “Mpim: Multi-purpose in-memory processing using
configurable resistive memory,” in ASPDAC, pp. 757–763, IEEE, 2017.

[16] M. Imani et al., “Exploring hyperdimensional associative memory,” in
HPCA, IEEE, 2017.

[17] P. Bakkum et al., “Accelerating sql database operations on a gpu with
cuda,” in 3rd GPGPU workshop, pp. 94–103, ACM, 2010.

[18] D. Schaa et al., “Exploring the multiple-gpu design space,” in IPDPS,
pp. 1–12, IEEE, 2009.

[19] S. Al-Kiswany et al., “Storegpu: exploiting graphics processing units to
accelerate distributed storage systems,” in HPDC, pp. 165–174, ACM,
2008.

[20] I. Gelado et al., “An asymmetric distributed shared memory model
for heterogeneous parallel systems,” in ACM SIGARCH Computer
Architecture News, vol. 38, pp. 347–358, ACM, 2010.

[21] J. Tigani and S. Naidu, Google BigQuery Analytics. John Wiley & Sons,
2014.

[22] S. Acharya et al., “Aqua: A fast decision support systems using
approximate query answers,” in VLDB, pp. 754–757, Morgan Kaufmann
Publishers Inc., 1999.

[23] S. Agarwal et al., “Blinkdb: queries with bounded errors and bounded
response times on very large data,” in EuroSys, pp. 29–42, ACM, 2013.

[24] M. Imani et al., “Resistive cam acceleration for tunable approximate
computing,” IEEE TETC, 2016.

[25] N. Talati et al., “Logic design within memristive memories using
Memristor-Aided loGIC (MAGIC),” IEEE TNano, vol. 15, pp. 635–650,
July 2016.

[26] M. Imani et al., “Ultra-efficient processing in-memory for data intensive
applications,” in DAC, IEEE, 2017.

[27] S. Kvatinsky et al., “VTEAM: A general model for voltage-controlled
memristors,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, pp. 786–790, Aug 2015.

