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ABSTRACT
Graph processing has become important for various applications in
today’s big data era. However, most graph processing applications
suffer from large memory overhead due to random memory accesses.
Such random memory access pattern provides little temporal and
spatial locality which cannot be accelerated by the conventional
hierarchical memory system. In this work, we propose GAS, a het-
erogeneous memory architecture, to accelerate graph applications
implemented in message-based vertex program model, which is
widely used in various graph processing systems. GAS utilizes the
specialized content-addressable memory (CAM) to store random
data, and determine exact access patterns by a series of associative
search. Thus, GAS not only removes the inefficiency of random
accesses but also reduces the memory access latency by accurate
prefetching. We test the efficiency of GAS with three important
graph processing kernels on five well-known graphs. Our experimen-
tal results show that GAS can significantly reduce cache miss rate
and improve the bandwidth utilization as compared to a conventional
system with a state-of-the-art graph-specific prefetching mechanism.
These enhancements result in 34% and 27% reduction in energy
consumption and execution time, respectively.
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1 INTRODUCTION
Graph has become one of the most important data structures in to-
day’s big-data era. Graph frameworks have been proposed to reduce
the difficulty of implementing different graph processing applica-
tions on various systems [1, 2]. However, previous work [3–5] found
that conventional architecture is inefficient in processing graph-based
applications. Such inefficiency mainly comes from the inconsistency
between the conventional memory hierarchy and the random mem-
ory access pattern existing in graph processing applications.
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Figure 1: Effect of random memory accesses.

Algorithm 1 shows the message-based vertex program model,
which is widely used in several popular graph processing systems [2,
6]. The property (vProp) and temporary property (vTProp) are
application-specific values for each vertex. Messages represent nec-
essary information for updating the vProps and vTProps. The mes-
sages are usually sent to each vertex from its in-coming neighbors.
In each iteration, an ActiveList consists of vertices to be processed
for producing out-going messages based on an application-specific
Process function. Each vertex updates its vProp based on in-coming
messages and two other functions - Reduce, and Apply. Every vertex
with an updated vProp is added to the active list in the next iteration.
The application is completed when there is no active vertex. In this
work, we investigate three important graph kernels implemented in
the framework, including bread-first-search (BFS), page-rank (PR)
and single-source-shortest-path (SSSP). Table 1 shows the detailed
implementations of these three applications.

In the vertex program model, accessing messages of each destina-
tion vertex during the Gather phase is random because messages are
stored based on the source vertex of each edge. Such random mem-
ory access pattern experiences poor spatial locality which causes
a large number of cache misses. High cache miss rate makes the
processor frequently communicate with the slow off-chip memory.
Figure 1a shows the average L1 cache miss rate when testing three
graph processing applications on five graphs including three real-
world graphs and two synthetic graphs. We compare the original
cache miss rate with the case when there is no random access (by
eliminating cache accesses during message gathering). The result
shows that removing random accesses can decrease cache miss rate
by 11.0%. To further illustrate the impact of cache miss rate on the
performance, we compare the performance of conventional architec-
ture and ideal architecture, which assumes that all random memory
accesses can be served by L1 cache (without influencing cache be-
haviours of other accesses). Figure 1b shows that ideal architecture
can reduce the execution time by 68.7% on average. Both of these
results indicate that graph processing can be significantly improved
by processing the message gathering more efficiently.
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Table 1: Framework-based implementation of different applications

Application vProp Process(u,e ) Reduce(u,e) Apply(u)
Breadth-First-Search Level e.msg = u.vProp+1 u.vT Prop = min(e.msg,u.vT Prop) u.vProp = min(u.vProp,u.vT Prop)
Page Rank Page rank score e.msg = u.vProp∗u.out_degree_ f actor u.vT Prop = u.vT Prop+ e.msg u.vProp = a∗ v.vT Prop+base
Single-Source-Shortest-Path Distance e.msg = u.vProp+ e.weight u.vT Prop = min(e.msg,u.vT Prop) u.vProp = min(u.vProp,u.vT Prop)

Algorithm 1: Framework of vertex program model
1: while ActiveList is not empty do
2: for v : ActiveList do
3: for e : OutEdges(v) do
4: e.msg = Process(v.vProp,e) ▷ Scatter
5: end for
6: end for
7: for v : AllVertices do
8: for e : InEdges(v) do
9: v.vT Prop = Reduce(v.vT Prop,e.msg) ▷ Gather

10: end for
11: end for
12: for v : AllVertices do
13: v.vProp = Apply(v.vProp,v.vT Prop) ▷ Apply
14: U pdateActiveList(v.vProp! = v.vT Prop)
15: end for
16: end while

In this work, we propose GAS, a heterogeneous memory architec-
ture which utilizes various memory techniques to efficiently handle
messages in the vertex program model. Other than components in
conventional systems (cache and main memory), GAS consists of
three main components: an on-chip buffer, a meta-data table, and an
addressable GAS memory. GAS handles a special memory region
managed by GAS memory to store all generated messages. At the
same time, the meta-data table is set up to store the basic informa-
tion of messages including newly allocated memory addresses. The
meta-data table is stored in CAM which supports associative search,
which is exploited to retrieve information of in-coming messages of
each vertex. A prefetching mechanism based on the search results is
proposed to load the corresponding data to the fast on-chip buffer
before the data is requested. We also design the software interface to
allow programmers easily implement graph applications accelerated
by GAS. We test GAS over 3 important graph processing kernels
on five real-world graphs, and the results show GAS can reduce
the number of cache misses by 44% and improve the bandwidth
utilization by 2.7× compared to a conventional system with a state-
of-the-art prefetching mechanism. Such improvement results in 34%
and 27% reduction in energy consumption and execution time.

2 RELATED WORK
Several prior works tried to accelerate data-intensive applications
by enabling processing in-memory [7–11]. The in-memory com-
putation often enables on non-volatile memory with high density
and zero leakage power [12, 13]. In framework-based graph pro-
cessing applications, the computation has been accelerated using
3D DRAM [14], memrisitor crossbar [15], and ASIC design[4]. All
these customized graph accelerators require significant changes to
the existing computer system to adopt them. On the contrary, GAS
is a new memory architecture that manages graph data in hetero-
geneous memory devices. The memory devices can be designed
and adopted based on existing technologies. Computer systems can
deploy GAS with acceptable overhead. In addition, GAS can also be
deployed in accelerators which utilize message-passing based model
to further improve their performance.

Several prefetching mechanisms have been proposed to accelerate
applications with irregular access patterns like graph processing
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Figure 2: Overall architecture of GAS.

applications [16, 17]. However, such prefetching mechanisms are not
stable to recognize the target memory access patterns which usually
depend on a lot of factors like algorithm, compiler, operating system
and architecture. Unlike these prefetching mechanisms, GAS do
not predict the access pattern. Instead, GAS utilizes the associative
search supported by CAM to accurately prefetch data required by
applications. Users can utilize the simple interface to accelerate their
applications without considering platform-specific factors.

3 GAS DESIGN
GAS is an extension of the conventional memory system, which is
designed to accelerate vertex program graph applications by optimiz-
ing the memory accesses to messages. In this section, we introduce
the detailed design of GAS.

3.1 Overall Architecture
Figure 2 shows the overall architecture of GAS integrated in a con-
ventional system with two-level caches and an off-chip DRAM. GAS
consists of two hardware components: an off-chip memory and an
on-chip buffer. We store all messages in GAS memory without going
through the conventional memory hierarchy considering the fact that
accessing messages is inefficient. The processor communicates with
GAS through the on-chip buffer and a corresponding controller to
handle all memory accesses to data stored in the off-chip addressable
GAS memory. On-chip buffer is used to cache the data transferred
between the processor and GAS memory using the system bus.

Off-chip GAS memory consists of five main components: address-
able GAS memory, controller, prefetcher, searcher and meta-data
table. GAS memory can be accessed in the same address space as the
DRAM memory. Programmer calls specific interface to allocate the
memory space for messages in this memory region. The controller
issues memory commands to the GAS memory. The meta-data ta-
ble is stored in CAM blocks supporting associative search. Each
entry of the meta-data table contains the basic message information.
The order of messages stored in meta-data table is determined in
Scatter phase, which is based on the order of out-going edges of
active vertices. An associative search can be issued for each vertex
in the meta-data table to find out all in-coming messages of the
vertex. The result of each search contains the address information
of future memory accesses, which can be exploited to improve the
performance by prefetching. Associative search and prefetching are
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implemented in the searcher and the prefetcher respectively. The
searcher issues search commands to the meta-data table and handles
the search results. The prefetcher notifies the controller to load extra
data to the on-chip buffer. The detailed of the prefetching mechanism
are introduced in Section 3.3.

3.2 Memory Management
GAS manages a special memory region in the same address space
as the DRAM memory. Figure 2 shows an example of how GAS
manages its memory space during the Scatter phase. For each active
vertex, the program checks all of its out-going edges and calculates
a message for each edge based on the application-specific Process
function. For each message, the source vertex, the destination vertex,
and the message data are sent to GAS. GAS allocates the data to a
memory location inside the GAS memory. Then, the source vertex,
the destination vertex, the allocated address are used to set up an
entry in the meta-data table.

As mentioned earlier, the meta-data table is a CAM which sup-
ports associative search. Addresses of the generated messages sent
to a specific vertex (2 in the figure) can be fetched by searching
the meta-data table. The query will activate all entries in the table,
whose destination vertex column is the target vertex. The message
addresses of all activated entries are stored in the GAS memory as a
pointer array. Then, the pointer array is returned to the application
to access all messages sent to the vertex. Thus, accessing messages
of a target vertex in GAS requires two stages. At first, GAS stores
a pointer array of in-coming messages based on associative search
results, and returns the address of the array to the program. In the sec-
ond stage, the program checks each message required in the Gather
phase by traversing the pointer array.

3.3 Prefetching
We propose a hardware prefetching mechanism, which fully utilizes
the on-chip buffer and the off-chip GAS memory bandwidth, to
accelerate memory accesses in the pointer array and message data.
After searching the meta-data table for a vertex, we get a pointer
array of all in-coming messages sent to this vertex. With the pointer
array generated by an associative search, the access pattern happens
during Gather is known because a vertex gathers messages from
all its in-coming edges. Accessing a message requires two memory
accesses: the access to the message pointer, and the access to the
message data denoted by the pointer. Since the access pattern of the
pointer array is in-order, the next few addresses are requested in the
near future. Furthermore, the content of the address denoted by each
pointer is accessed by the application for loading the actual message
data. Based on these two observations, GAS prefetches not only the
next few pointers (stream prefetching), but also the data stored in
these addresses (message prefetching). The application can access
both the next message pointer and the corresponding message data
from the on-chip buffer. Figure 3 shows the example of prefetching.

In GAS, prefetching operations are triggered by a miss in the
on-chip buffer. If a miss happens, the buffer controller loads data
from the off-chip GAS memory. The GAS memory controller loads
the data based on the address of the miss. If the miss happens in the
pointer array, GAS issues both pointer and message prefetches to
the on-chip buffer. The prefetcher determines how many pointers
and corresponding messages should be loaded to the on-chip buffer
during one prefetching operation based on the message size (known
in the message entry) and the memory bandwidth. If the cache miss
happens outside the pointer array, which means a miss on message
data, the prefetcher loads the next a few cachelines of that address
because such miss may be caused by a large message size. GAS
does not prefetch the pointer array since it cannot predict the size of
message data without knowing the current message information.

4 IMPLEMENTATION
In this section, we introduce the memory technologies we utilize to
implement different hardware components and the software interface
provided for programmers to use GAS architecture.

4.1 Memory Implementation
On-chip buffer: Data in the on-chip buffer should be accessed
much faster than that in the GAS memory. Since a specific message
is only accessed once in the Gather phase and the access pattern of
messages is not streaming, we implement the on-chip buffer as a
fully-associative cache with LRU replacement policy. Because the
buffer data (including the pointer array and message) is no longer
useful once it’s accessed and the off-chip memory bandwidth is
limited, the setting of on-chip buffer is similar to a conventional L1
cache. Thus, SRAM technology is used to implement such small and
fast on-chip buffer for providing the optimized performance and the
tag is stored in the same SRAM chip. The on-chip buffer is handled
by a specialized cache controller. Considering both the pointer array
and message data will not be updated by the application, there is
no coherence issues between the on-chip buffer and the off-chip
memory. Removing the coherence management even makes the
on-chip buffer more efficient than a conventional cache.

GAS memory: We utilize memristor-based crossbar memory to
implement the GAS memory. The organization of GAS memory is
similar to a conventional DRAM DIMM where each channel con-
sists of multiple ranks and each rank consists of multiple banks.
We assume a single channel in this work, and a memory controller
is used to issue load and store commands. We choose memristors
because resistive crossbar memory provides better energy-efficiency
and density than conventional DRAM/SRAM technologies while
still providing acceptable reading performance [18, 19]. Further-
more, accessing messages in graph processing applications does not
trigger intensive write operations, so the problems caused by limited
endurance and inefficient writes are minimized.

Meta-data table: In this work, we use a resistive CAM because
of its high-density and energy efficiency. The architecture of GAS
utilizes crossbar resistive CAM [20–22] where each CAM row stores
one meta-data entry. Once we issue a search, the CAM sense ampli-
fier detects rows which exactly match with a query signal. In each
CAM block, the latch stores the result of each search and it is used
to activate the corresponding rows of the same memory block. Next,
the memory sense amplifier sequentially reads the message address
in each activated row and store them in the write register. Finally,
the result is sent to GAS memory.
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Algorithm 2: Example of SSSP
1: while ActiveList is not empty do
2: for v : ActiveList do
3: for e : OutEdges(v) do
4: alloc_msg(v,e.dst,v.vProp+ e.len) ▷ Scatter
5: end for
6: end for
7: for v : AllVertices do
8: msgs = load_msgs(v)
9: for msg : msgs do

10: v.vT Prop = min(v.vT Prop,msg−> data) ▷ Gather
11: end for
12: end for
13: for v : AllVertices do
14: v.vProp = min(v.vProp,v.vT Prop) ▷ Apply
15: U pdateActiveList(v.vProp! = v.vT Prop)
16: end for
17: end while

Since the performance of CAM decreases exponentially as the
number of CAM rows increases [22], a single CAM block is not
enough to store all entries in the meta-data table. Thus, we utilize
multiple CAM blocks, each of which has the independent search
logic circuit, to store big meta-data tables. For each search, GAS
issues commands to all CAM blocks and the result of each CAM
block is stored locally. The program accesses CAM blocks one by
one to collects all information.

4.2 Software Interface
We propose two functions for programmers to easily utilize GAS to
accelerate graph processing. alloc_msg allocates a specific message
to GAS memory and set up a meta-data entry. Programmer calls
load_msg to access messages sent to each vertex. Algorithm 2 shows
an example of SSSP using GAS.

alloc_msg(src, dst, msg): During the Scatter phase, each active
vertex calculates a message for each of its out-going edges. For each
message, the program calls alloc_msg to allocate a memory space in
GAS and add the corresponding entry in the meta-data table. This
function also requires the programmer to pass the source vertex, the
destination vertex, and the data of message to add an entry in the
meta-data table. The store instructions of messages are very similar
to normal memory accesses except they are handled by the memory
hierarchy of GAS. The memory location allocated to messages are
continuous which makes storing messages to GAS efficiently using
on-chip buffer and direct-memory-access.

load_msgs(v): Each call of load_msgs issues a search command
on the meta-data table. GAS stores the search result as a pointer
array and return it to the program. During the Gather phase, each
vertex checks all received messages by calling load_msgs. Only
the target vertex v is required for calling load_msgs. The program
utilizes the pointer array to access all messages sent to each vertex.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
Simulation Infrastructure: In this work, we use Sniper [23], an
accurate and high-speed x86 simulator, for performance simulations.
We implement the handler of all memory accesses to message in
the Pin-based [24] front-end of Sniper and simulate the behavior of
GAS when Sniper handles those accesses. We use McPAT [25] for
energy simulation. The method of integrating McPAT with Sniper
and simulating energy consumption is the same as that used in the
previous work [26]. The timing and power simulations for on-chip
buffer are done with CACTI [27].

Table 2: System configuration

Configuration
Technology 45nm, 1.2V 2.66GHz
Cores 2.66GHz Intel Nehalem-like
L1-D Cache 32 KB, private, 5 cycles, 64B blocks
L1-I Cache 32 KB, private, 5 cycles, 64B blocks
L2 Cache 256 KB, private, 11 cycles, 64B blocks
Off-chip DRAM 30GB/s, latency = 122 cycles
GAS (GAS Memory (memristor)) 1GHz bus frequency, 30GB/s

read-write : 2-31 cycles
GAS (On-chip Buffer) 32KB, fully-associativity, 32B blocks
GAS (ReRAM CAM) 18B * 4096 per block

read-write-search : 2-31-44 cycles

Table 3: Graph workload summary
Graph #Vertices #Edges Description

Wikipedia 3.56M 101M English part of Wikipedia [30, 31]
Live Journal 5.4M 79M LiveJournal [30, 31]

Twitter 41M 91M Twitter [30, 31]
Uniform 2.1M 33M Uniform random graph (degree 16) [32]

G500 2.1M 32M Kronecker graph (Graph500 specifications [32, 33])

Table 4: Energy consumption and execution time normalized to
the IMP system.

Applications GAS w/o Prefetching GAS Ideal Architecture
Energy consum. Execution time Energy consum. Execution time Energy consum. Execution time

BFS 0.67 1.53 0.72 0.73 0.40 0.34
PR 0.45 1.58 0.53 0.63 0.40 0.38

SSSP 0.66 2.01 0.72 0.81 0.38 0.34

We evaluate the CAM functionality in GAS using HSPICE circuit
level simulations in 45 nm technology. We use VTEAM memristor
model [28] for our memory device simulation with RON and ROFF
of 10kΩ and 10MΩ respectively. We also cross-validate the com-
puted energy consumption and performance of the crossbar memory
blocks using NVSIM [29]. The architectural parameters of the sys-
tem simulated in our experiments are shown in Table 2. Due to the
overhead of the input buffer, the energy and execution time of the
CAM increases at a higher rate for the CAM blocks with more than
4096 rows. Therefore, we limit the number of rows in each CAM
block to 4096.

Workloads: In this work, we evaluate the performance and en-
ergy consumption of the proposed GAS over three popular kernels
on five graphs, including three real world graphs and two synthetic
graphs. The detailed descriptions of graphs are shown in Table 3.
For each application, we implement algorithms based on the frame-
work introduced in the previous section. We simulate BFS and SSSP
entirely while five iterations are simulated in PR.

Baseline: We compare the performance and energy efficiency of
GAS with two baseline systems: a system with a state-of-the-art
indirect-memory prefetching (IMP) [17] and a system with prefect
L1 caches (Ideal). In the IMP system, an indirect memory prefetch-
ing mechanism is implemented with a basic streaming prefetcher.
The system has 16 prefetching entries and 4 indirect prefetching
entries, and the maximum number of prefetched blocks is 16. In the
ideal system, we assume all memory accesses can be served in the
L1 cache, which means the system has an infinite cache capacity and
memory bandwidth. We also test GAS without prefetching mech-
anism to justify the effect of memristor memory and prefetching.
There is no meta-data table in this system, and all memory accesses
are directly handled by on-chip buffer and GAS memory.

5.2 Overall Results
Table 4 shows the overall results of running workloads on GAS
without prefetching, GAS, and ideal architecture. All results are
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Figure 4: Energy consumption and execution time of different systems over different workloads normalized to IMP.

normalized to the result of the IMP architecture. Our evaluations
show that GAS reduces the average energy consumption of BFS,
PR, and SSSP applications by 28%, 47%, and 28% respectively.
The average reductions in execution times of three applications
are 27%, 37%, and 19% respectively. As compared to the result
of GAS w/o prefetching, GAS consumes 10% more energy which
mainly comes from associative search and writing search results
to GAS memory. However, prefetching improves the performance
by 2.4× as compared to GAS w/o prefetching. Since PR checks
and produces messages for all the edges in the graph during each
iteration, the number of messages processed and accessed in each
iteration is equal to the total number of edges in the graph. This
access pattern leads to many random accesses which dominates the
execution of application. In such a case, GAS removes the effect of
cache misses introduced by random accesses and further accelerates
the application by maximizing bandwidth with prefetching. On the
other hand, GAS has the least improvement over SSSP which has a
lot of accesses to edge information, like weights. The performance
bottleneck of SSSP is due to accesses to messages as well as edge in-
formation. Furthermore, each vertex in SSSP is activated in multiple
iterations which reduces the number of incoming messages for each
vertex. Less message for a vertex reduces the benefits of accurate
prefetching. However, GAS still decreases the energy consumption
and execution time of SSSP by 28% and 19% respectively.

5.3 Performance and Energy Comparison
Figure 4 shows the detailed results of the energy consumption and
execution time of five graphs over different architectures. Our eval-
uations show that all applications provide less efficiency on real-
world graphs (Wikipedia, Live Journal and Twitter), as compared to
synthetic graphs (Uniform, G500). This is caused by the fact that
real-world graphs are commonly less random than synthetic graphs.
For instance, articles about a common topic in the Wikipedia are
represented by continuous indexes and refer to each other. There-
fore, both incoming and outgoing edges to such vertices are stored
together. In contrast, synthetic graphs are generated randomly based
on a pre-defined degree of distribution over all vertices, so they have
more irregular structures and thus more random accesses.

Over all applications, the ideal architecture provides 69.8% and
71.4% reduction in execution time and energy consumption respec-
tively, as compared to the IMP architecture. Although the ideal
architecture provides the maximum efficiency in most cases, GAS
can still perform very close to the ideal architecture for some work-
loads, incurring a performance loss within 5%. This is because the
on-chip buffers in GAS significantly reduce the overhead of random
message accesses, which contributes significantly to the energy con-
sumption and execution time in those specific cases. For the ideal
architecture, even though all memory accesses are served by L1
cache, each memory access still needs to look up the cache tag and
access one cache block. The size of this access can sometimes be
larger than the requested data itself. The comparison between GAS
and GAS w/o prefetching shows that the improvement brought by
prefetching is less in Twitter than other graphs. This is caused by
the low average degrees for vertices. In this case, the number of
messages sent to each vertex is small which is hard for prefetching
to accelerate.

5.4 Memory Access Behavior
GAS improves the performance of the system by offloading random
memory accesses to a specific memory system. The performance
difference between GAS and the IMP architecture mainly comes
from different memory access behaviors. Table 5 lists the results of
L1 cache miss rate and average memory access latency of different
applications running on GAS and the IMP architecture. The results
show that the miss rate and memory latency are consistent with those
reported in Figure 4. For example, performance improvement of
GAS on PR comes from lower cache miss rate and average memory
access latency. For SSSP, reduction in cache miss rate cannot provide
similar latency reductions. This is due to a large number of memory
accesses to edge information (weights) in SSSP, which cannot be
handled by GAS. The loaded edge information cannot be kept in
cache until the next access (in next iteration) due to its large size.
Thus, it causes a large number of cache misses to edge information
which introduces long memory access latency. However, the cache
miss rate is not increased significantly by accessing edge information
because many continuous edges are stored in the same cache block.
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Table 5: Memory access behavior of the IMP architecture and GAS over different workloads.

BFS PR SSSP
Wiki LJournal Twit Uniform G500 Wiki LJournal Twit Uniform G500 Wiki LJournal Twit Uniform G500

IMP
Architecture

Mem latency (ns) 5.67 5.68 4.85 4.62 4.19 5.74 5.64 7.72 3.90 3.67 6.27 6.05 4.95 4.51 4.37
Cache miss (%) 8.11 7.22 5.42 4.61 4.45 10.21 8.44 9.73 3.53 3.48 9.63 8.12 5.51 4.46 4.62

GAS Mem latency (ns) 3.72 3.98 4.55 2.06 2.09 1.15 1.32 2.23 1.89 1.77 3.85 3.87 4.26 2.11 2.03
Cache miss (%) 4.70 4.80 5.01 2.04 1.95 1.00 1.40 2.40 1.30 1.24 6.30 6.12 4.70 1.99 2.11
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Figure 5: (a) Average bandwidth utilization (b) Maximum band-
width requirement.

Figure 5a shows the bandwidth utilization during Gather phase of
each application on GAS and the IMP architecture. The maximum
bandwidths of the DRAM chip and GAS are kept the same for a fair
comparison. The bandwidth of GAS is supposed to be fully utilized
by prefetching unless there is no future message to be fetched for the
current vertex.The result shows that GAS improves the average band-
width utilization of BFS, PR, and SSSP by 3.0×, 2.7×, and 2.4× on
average, respectively over all workloads by prefetching messages at
the maximum bandwidth. Figure 5b shows the maximum bandwidth
requirements averaged over different applications. For instance, the
PR requires the maximum bandwidth of 168.1 GB/s, which means
that we can further improve the GAS efficiency by providing higher
bandwidth between GAS and processing cores.

6 CONCLUSION
We propose GAS, a heterogeneous memory architecture to acceler-
ate graph processing applications. GAS removes random memory
accesses in graph processing applications, by utilizing associative
search to infer the exact memory access pattern while accessing
random messages in the vertex program model. We proposed a hard-
ware prefetching mechanism to improve the performance of GAS
and an interface to integrate GAS with different applications. We
simulate the performance of GAS on three popular graph kernels
over five well-known graphs. The experimental results show that
GAS can significantly reduce cache misses and improve the band-
width utilization of conventional architecture with a state-of-the-art
prefetching mechanism. These enhancements result in significant
improvements on energy and performance of graph applications.
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