
Program Acceleration Using Nearest Distance
Associative Search

Mohsen Imani, Daniel Peroni, and Tajana Rosing
Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA

{moimani, dperoni, tajana}@ucsd.edu

Abstract—Data generated by current computing systems is
rapidly increasing as they become more interconnected as part
of the Internet of Things (IoT). The growing amount of generated
data, such as multimedia, needs to be accelerated using efficient
massive parallel processors. Associative memories, in tandem
with processing elements, in the form of look-up tables, can
reduce energy consumption by eliminating redundant computa-
tions. In this paper, we propose a resistive associative unit, called
RAU, which approximately performs basic computations with
significantly higher efficiency compared to traditional processing
units. RAU stores high frequency patterns corresponding to each
operation and then retrieves the nearest distance row to the
input data as an approximate output. In order to avoid using
a large and energy intensive RAU, our design adaptively detects
inputs with lower frequency and assigns them to precise cores
to process. For each application, our design is able to adjust
the ratio of data processed between RAU and precise cores
to ensure computational accuracy. We consider the application
of RAU on an AMD Southern Island GPU, a recent GPGPU
architecture. Our experimental evaluation shows that GPGPU
enhanced with RAU can achieve 61% average energy savings,
and 2.2× speedup over eight diverse OpenCL applications, while
ensuring acceptable quality of computation. The energy-delay
product improvement of enhanced GPGPU is 5.7× and 2.8×
higher compared to conventional and state-of-the-art approxi-
mate GPGPU, respectively.

I. INTRODUCTION

In order for embedded devices to become Internet of things
(IoT) computing nodes, they must be capable of processing raw
sensing data streams, which traditionally have run on servers.
This is, in part, motivated by the need to immediately access
information regardless of connectivity [1]–[6]. Unfortunately,
existing device architectures cannot sustain the computational
loads required by IoT, because the algorithms necessary to
process IoT data consume too much power and would not nearly
have enough performance to meet real-time needs for feedback.
Therefore, we need to build systems capable of responding to
our needs with acceptable quality of response, while also being
capable of significantly faster and much more energy efficient
performance [7]–[10]. Many of the algorithms which processes
sensor data are, at their heart, statistical and thus, do not require
exact answers [11]. Similarly, in audio and video processing we
have long exploited the fact that humans do not perceive all colors
and sounds equally well.
Associative memory in the form of a look-up table (LUT) is a
promising solution to improve the energy efficiency of parallel
processors [12]–[16]. Associative memory prestores a set of
frequent patterns and retrieves them at runtime in order to reduce
the redundant computations. In hardware, associative memory
is implemented using ternary content addressable memory
(TCAM). However, CMOS-based TCAMs consume significant
energy during searches, limiting their application as associative
memories. The high density and zero leakage power of non-volatile
memories (NVMs) represents a promising opportunity for building
efficient memory and computing units [17], [18]. The main idea of

the approximation is, rather than accurately computing on existing
processing units, TCAM returns precomputed results, not only for
perfect matches of operands, but also for inexact matches. Voltage
overscaling has been introduced to apply approximation and
further reduce the associative memory energy consumption [19]–
[26]. This technique has low energy improvement due to its
inability to tune the level of output accuracy. However, these
techniques cannot properly trade energy and accuracy because
the Hamming distance metric it uses does not consider the
exact impact of each bit indices on approximation. In addition,
associative memory in exact or approximate mode cannot provide
any performance improvement.

In contrast to prior work which applied associative memory
for computational reuse, we designed a resistive associative unit,
called RAU, which can accelerate computation as a stand-alone
memory-based computing unit. RAU stores high frequency
patterns corresponding to each operation and searches for a nearest
distance data to the input operand at execution time. In order to
avoid using large RAU and to dynamically tune the computation
accuracy, RAU detects inputs with lower frequency and assigns
them to precise cores to process. For each application, our design
adjusts the ratio of data processed between RAU and precise cores
in order to ensure desired computation accuracy. We apply RAU
to an AMD Southern Island GPU, where RAU is integrated beside
each floating point unit in the GPGPU architecture in m pipeline
stages. Our experimental evaluation shows that GPGPU using
RAU can achieve 61% average energy savings and 2.2× speedup
over eight general OpenCL and machine learning applications,
while ensuring the quality of computation is in acceptable range.

II. RELATED WORK

Associative memory has been applied to a wide range
of domains including associative computing, memorization,
networking, and recently approximate computing [19], [27].
Associative memory uses TCAM blocks to store frequent patterns
and reuse them at runtime. The conventional CMOS-based TCAM
consists of two SRAM blocks and consumes substantial energy
for each search operation [28]. Non-volatile memories (NVMs)
represent a new opportunity to design efficient TCAMs with
high density and low leakage power [29]. Resistive Random
Access Memory (ReRAM) and Magnetic RAMs (MRAMs) are
two common types of non-volatile memories used in memory
design [30]. Although resistive CAMs are faster, denser, and more
energy efficient when compared to MRAM CAMs, their limited
write endurance (∼ 107 resistive vs. ∼ 1015 Magnetic) reduces
their application in the computing domain [31]. In this work, we
use ReRAM-based TCAM and address the endurance issue by
applying offline profiling and limiting the number of updates to
once during the application change.

SIMD Lane

Thread Dispatcher

C
o

m
p

u
tin

g

 U
n

it 1

Global Memory

C
o

m
p

u
tin

g

 U
n

it 2

C
o

m
p

u
tin

g

 U
n

it 3
2

...

Scheduler

Local Memory

S
IM

D
 1

S
IM

D
 2

S
IM

D
 3

S
IM

D
 4

IF/ID

Register File

F
P

U
1

F
P

U
2

F
P

U
3

F
P

U
4

F
P

U
1
6

IN
T

1

IN
T

2

IN
T

 3

IN
T

4

IN
T

1
6

Compute Device Compute Unit SIMD Unit Floating Point Unit

Resistive

Memory

SIMD Lane
SIMD Lane

S
ta

g
e

1

S
ta

g
e

2

S
ta

g
e

N

S
ta

g
e

3

...

Resistive Associative Unit

ADD
MUL

MAC

In
p

u
t

O
p

er
a

n
d

s

W
r
it

e
S

ta
g

e

FPU

Activation

Floating Point Execution Unit M
U

X

CAM

Cell

CAM

Cell

CAM

Cell

...

R
o

w
 D

riv
er

Buffer

... ...

...

Clk

Input

Operand
N/m-bit

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

Bitline Driver

Sense Amplifier

T
C

A
M

 1

T
C

A
M

 2

T
C

A
M

 3

T
C

A
M

 m

...

FPU

Activation

Clk

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

...

Buffer

... ...

...

N/m-bit

CAM

Cell

CAM

Cell

CAM

Cell
Clk

CAM

Cell

CAM

Cell

CAM

Cell

...

Buffer

... ...

...

N/m-bit

CAM

Cell

CAM

Cell

CAM

Cell

S
en

se A
m

p
lifier

R
o

w
 D

riv
er

N
H

D
 D

etecto
r

S
en

se A
m

p
lifier

N
H

D
 D

etecto
r

L
a
tch

S
en

se A
m

p
lifier

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

MEM

Cell

R
o

w
 D

riv
er ...

...

...

...

...

...

...

N bit

Stage 1
st
 Stage 2

nd
 Stage m

th

T
C

A
M

 1

T
C

A
M

 2

T
C

A
M

 3

T
C

A
M

 m

Resistive

Memory

SQRT

THR

FPU

Activation

Fig. 1. (a) Integration of RAU in AMD Southern Island GPU architecture and (b) the detail structure of multistage RAU.

Previous works used associative memories in parallel with
processor architectures for computational reuse, memoization and
enabling approximate computing [27]. In memoization, a single
cycle associative memory beside each processing cores maintains
the context of error free execution [27]. For computational reuse,
associative memories exploit data locality to reduce redundant
computation. However, TCAM in associative memory architecture
consume large amounts of power during searches. To improve
the search energy consumption, work in [32] implements voltage
overscaling on a resistive TCAM block. However, resistive
TCAM rows under voltage overscaling inexactly match to input
data within a few number of Hamming distances. The lack of
approximate configurability limits the application of approximate
hardware to a small range of error tolerant applications. Work
in [19] proposed configurable associative memory which can relax
computation using voltage overscaling of TCAM rows/bitlines to
trade energy and accuracy for each application. However, these
techniques: (i) cannot improve computation performance, since
the performance is bounded by GPU pipeline stages, and (ii)
cannot optimally trade energy and accuracy since the hamming
distance metric does not consider the exact impact of each bit
index on computation.

Work in [33], [34] used resistive CAM in order to accelerate
CPU computation in application level. However, this work uses
inaccurate Hamming distance as similarity metric which results in
significantly low accuracy for GPU usage. In contrast, we propose
a resistive associative unit which can improve GPGPU compu-
tation by providing large energy savings and speed up. Instead
of using Hamming distance metric to find the closet row, RAU
returns a row with the closest distance to the input data at each
search operation. Our design adaptively identifies the data with
lower frequency and runs that portion of data on exact hardware
in order to guarantee computation accuracy.

III. GPGPU ACCELERATION

A. Data Locality and Approximation
There is significant data locality in GPGPU workloads. For

example, in the multimedia domain, many images or video frames
have pixel similarities. We can take advantage of this data locality

by storing frequently occurring computations to memory. When
the GPU receives inputs the memory banks are checked for a
matching pattern, and if a set matching the inputs is located, the
associated output is returned. The Floating Point Unit (FPU) does
not need to run when a hit occurs, saving energy. The application
of memory is not limited to exact matches. A well designed imple-
mentation can return not only exact matches, but close matches as
well. If the allowable deviation from the stored values is increased,
the number of matches to values stored in memory also increases.
However, this comes at the cost of output accuracy. When no
deviation limit is set, the output for the values closest matching
the inputs is returned.

B. Resistive Associative Unit and its Integration
We propose a resistive associative unit (RAU) which exploits

data locality to approximately process the data without requiring
a processing core. RAU consists of a ternary content addressable
memory (TCAM) to store high frequency patterns and memory for
their corresponding outputs. In contrast to conventional associative
memory, RAU has the computing capability to search for a TCAM
row which has the nearest distance to the input data. When an
input operand hits on TCAM, the corresponding row of resistive
memory is activated to read the approximate result of computation.
The distance metric used to find nearest row has a major impact
on accuracy. Hamming distance can be used, however, this metric
does not provide sufficient computation accuracy because it does
not consider the impact of different bit indices on computation.
In GPU architecture, the most significant bits (MSBs) have much
higher impact on computation than the least significant bits
(LSBs). In contrast, our distance metric considers the impact of bit
indices when finding the nearest value.

The RAU can be used in many different domains as an efficient
approximate computing unit. In this paper, we focus on parallel
processing in a particular GPU architecture. Fig. 1 shows the AMD
Southern Island GPU architecture, which consists of 32 computing
units, each with four SIMD. Each SIMD consists of 16 lanes, and
has both integer and floating point units. In GPU architecture,
the FPUs are the slowest and consume the most energy during
computation. Fig. 1 shows the structure of the proposed RAU
consisting of m serial stages working in pipeline search. In RAU

processing, the input data is split into m equal N/m-bit sized parts,
where N is input word size. RAU starts the search operation from
data in most significant block (1st Stage) and based on hit(s) of
the stage, our design activates the rows of the second RAU stage
selectively. Instead of searching whole rows of the second stage,
our design searches for a nearest row in the selected rows. This
selective row activation and serial search continues until RAU
reaches a single active row on the last stage. This multistage search
significantly improves the energy consumption of RAU blocks
by reducing the number of active rows. The clock frequency of
RAU is different from FPU pipeline stages, because RAU stage
(< 2048-rows) can compute faster than FPU stages. The RAU
clock frequency is set based on the size of each RAU stage.

1) Stand-alone RAU Computing: For inputs that are outside
associative memory’s scope, conventional TCAMs do not return a
value. In contrast, our TCAM in RAU works approximately and
returns a row which has the closest distance to the input operand,
allowing RAU to be used as stand-alone approximate computing
unit. For example, in GPU architecture, the RAU can replace an
FPU to approximately model the FPU’s basic functionalities such
as addition, multiplication, and square root. The RAU computation
accuracy depends on the number of pre-stored patterns. Although
increasing the size of RAU improves computation accuracy, the
additional rows increase search energy and delay, because a larger
TCAM requires an input buffer to distribute data amongst all rows
simultaneously. This buffer makes up a large portion of the total
TCAM energy and search delay.

2) Hybrid RAU Computing: Our design also supports hybrid
computation, where workloads are partially processed on memory
with the remainder run on precise cores. A small stand-alone
RAU searching for the nearest data may suffer low computation
accuracy for some applications. Therefore, instead of significantly
increasing the RAU size, we assign the less frequent data to FPUs
to process. In this way, we can leave the RAU block small to
support high frequency patterns. In many applications, the output
accuracy is sensitive to some key, yet infrequent, values. For
example, in Sobel filter, the data stored on the edges usually has
lower frequency, but higher impact on computation accuracy.
To achieve large energy savings using smaller RAU, our design
adaptively identifies sensitive and far inputs, i.e., inputs with large
distance from stored memory values, and processes them on FPUs.
To ensure computation accuracy, the ratio of data split between
RAU and FPU can be set by changing the maximum distance
the first RAU stage accepts during its search operation. To find
the proper distance threshold (THR) for each application, our
framework, shown in Fig. 2, starts running computation on precise
and approximate GPGPU. In the case of having higher quality
than required level (QoS > QR), our framework increases the
THR, means increasing the portion of data running on RAU. This
process continues until quality, QoS, drops below the required
value, QR. In this work we defined QR to be 90% and 98% for
general and machine learning applications respectively, verified
by prior work [19], [35]. In that case, our design selects the THR
value in previous iteration as the maximum threshold value which
ensures quality of service.

IV. RAU HARDWARE DESIGN

A. RAU Memory Cell
In this work, we use VTEAM memristor model [36] for our

memory design simulation with RON and ROFF of 10kΩ and
10MΩ respectively. We design a crossbar content addressable
memory for the RAU block (1T − nR). Crossbar memory is an

Exact GPU

Accelerated

GPU + RAU
Dataset

Exact

Inexact

Accuracy Tuning

Yes

RAU

Configuration

No
QoS>QR

THR

Error

Estimation

User

QR

Fig. 2. Framework to support tunable approximate computing (QR is the
requested quality by the user)

access-free transistor memory architecture, which can achieve
high density, significantly reduced energy, and scalability. The
area of crossbar resistive memory is 4F2/n, where F is the
minimum feature size and the n is the number of resistive layers
in 3 dimensional space. Therefore, in our case, the RAU can be
implemented at the top of the CMOS-based FPUs with negligible
area overhead. Fig. 3 shows the structure and functionality of
crossbar TCAM, where the values are stored on memory cells
based on the memristor states. Crossbar cells in RAU store the
low resistance (RON) and high resistance (ROFF), representing
zero and one values respectively, which is inverse of traditional
crossbar cells. This provides inverse functionality of TCAM and
allows us to design a CAM which can search for nearest distance
data.

ML

SL SL
SL

BL

Rsense

Vdd

Memory

C
ell

TCAM

S
en

se A
m

p
lifie

r

R R

CAM memristor values

Search control signals

Fig. 3. The TCAM and memory cells in proposed RAU design.

B. Nearest Distance CAM
Conventional TCAMs do not have the ability to search for

a nearest distance row to an input key. To better understand
the functionality of RAU, first consider the search operation
in conventional TCAM. The search operation has two phases:
precharging and evaluation. Before each search operation, a
row driver precharges all TCAM rows (matched line). Then, in
evaluation mode, input data is distributed among all rows using
vertical bitline. A traditional TCAM cell discharges ML in case
of a mismatch, but in our proposed RAU, the memristor values
are programmed inversely. This means a TCAM cell with a
similar stored value to the input discharges the ML, while the
mismatch cells maintain ML charge. Fig. 4 shows the timing
characteristic of a proposed 8 bit TCAM row, when an input data
matches with stored value with different numbers of bit matches
(i = 1, ...,5 bits). During the search operation, the matched cells
start discharging the ML. The rate of ML discharging depends
on the number of matched cells. To detect a nearest Hamming
distance row, we need to detect a row which has the fastest ML
discharging voltage. In RAU, the sense amplifier finds the nearest

0

0.2

0.4

0.6

0.8

1
M

L
 V

o
lt

a
g
e

(V
)

2−bit

match
3−bit

match

4−bit

match

T
1

T
2

T
3

T
4

T
5

1−bit

match

5−bit

match

Fig. 4. ML discharging current in a CAM row with different number of
matches.

rows by tracking the ML discharging voltage in all TCAM rows.

C. Peripheral Circuitry
Fig. 5a shows the peripheral circuitry to support nearest distance

search. For each TCAM stage, peripheral circuitry consists of
three parts: a sense amplifier, a nearest Hamming distance (NHD)
detector, and a row driver. A sense amplifier strengths the MLs
voltage to discharge the ML voltage in a row which has more
bits matching with input data. An NHD detector is an resistive
circuitry which samples output sense amplifier voltages in all rows
and finds the time that first row(s) start discharging the ML. The
value of RSense in the NHD detector is set based on the number
of TCAM rows. When an NHD detects the first matched row(s),
it signals the sense amplifier to stop the search operation on all
TCAM rows. Meanwhile, the CDr capacitor on selected nearest
row(s) starts charging. Finally, the activated capacitor(s) will
selectively precharge row(s) of the next TCAM stage in the next
clock cycle (Clk).
Fig. 5b shows the structure of sense amplifier circuitry in the first
and other RAU stages, i.e., 2nd to mth, to support nearest distance
search. The dashed lines in the figure are extra circuitry of the first
stage RAU. The goal of first stage sense amplifier is to stop hits
on the first TCAM stage, when the input data does not closely
match with stored RAU values. The THR signal dynamically sets
a maximum far matching (e.g., h bits) that our design can accept
in nearest distance search. If an input data has larger distance than
h-bit, the THR signal activates MT transistor and stops the search
operation on the remaining RAU stages. THR decides whether
the computation needs to process on RAU or FPUs. In case of
CG=1, the search continues on next RAU stages, otherwise the
computation starts running on FPU. The time of THR activation,
which determines the level of approximation, can be dynamically
set based on a maximum acceptable distance on nearest search.

Fig. 6 shows the HSPICE waveform verifying the correct
functionality of the proposed design. The ML precharges in the
ith TCAM stage on the positive clock edge (T1). The search at
the ith TCAM stage starts by distributing input data among all
TCAM rows (T2). After that the MLi discharges as the nearest
distance row to input data (T3). When the sense amplifier detects
the discharging current of MLi, it enables the EnL signal (T4).
Finally, the EnL signal activates the MLi+1 of the next ML by
precharging it to V dd (T5).

V. EXPERIMENTAL RESULTS

A. Experimental Setup
We implemented RAUs on the AMD Southern Island GPU

architecture, Radeon HD 7970 device, a recent GPU architecture.
We adopt the image processing from AMD APP SDK v2.5 in
OpenCL to make it suitable for streaming applications. We use

Row DriverSense Amplifier NHD Detector

IML

RSense

Clk

Clk

C
A

M
 S

ta
g

e
ith

C
A

M
 S

ta
g

e
i+

1
th

S
A

S
A

First Stage SA with THR

Other SA Stages

ML

ML

THR

THR

(a) (b)

MT

Clk

E
n

L

MLi

Mli+1

MT

C
G

CDr

CDr

R R

Vdd

Vdd Vdd

Vdd Vdd

EnL

EnL

EnL

Fig. 5. (a) RAU peripheral circuitry to support nearest distance search. (b)
Sense amplifier of different RAU stages.

MLi

MLi+1

EnL

ClK

Detector ML ActivationPrecharging CAM Search

T2T1 T3 T4 T5

Fig. 6. HSPICE waveforms to show the functionality of proposed RAU
peripheral circuitry.

Multi2sim, a cycle accurate CPU-GPU simulator and modified the
kernel code to do profiling and runtime simulation [37].

B. RAU Configurations
The number of RAU stages greatly impacts computation energy

and speedup, as well as accuracy. A short RAU block can provide
following advantages/disadvantages: (i) Using short RAU pipeline
results in fast precharging and search operation on TCAM block,
which results in search speedup. (ii) RAU stages work in pipeline
stages where the rows of the next TCAM stage activates based on
the hits of the current stage. This selective row activation reduces
the number of active rows and improves energy savings on next
RAU block. (iii) The disadvantage of using short RAU is fewer
opportunities for our hardware to adaptively balance the ratio of
the running application on RAU and FPU. The first RAU stage
does not contain enough bits to change THR and decide a portion
of running data on RAU and FPU. We use Energy-Delay Product
(EDP) as a metric to find the best block size over eight tested
applications. Based on our results, the minimum EDP occurs at
middle block sizes, i.e., 4 bits and 8 bits, depending on application
type. The average EDP for eight applications shows using 4 bits
block is the best configuration which can provide maximum 2.3×
EDP improvement compared to traditional GPGPU architecture.

C. Stand-alone RAU Computing
Table I shows shows energy improvement, performance speedup

of GPGPU when the FPUs are replaced with RAU of different
sizes. In each RAU size, the energy improvement and speedup are
relative to conventional GPGPU architecture using FPUs. Table I
also shows quality loss (QL) of running eight diverse GPGPU
applications on RAU with different sizes. Increasing the RAU size

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o

rm
a

li
ze

d
 E

n
er

g
y

 &
 E

x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(a) Sobel

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o

rm
a

li
ze

d
 E

n
er

g
y

 &
 E

x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(b) Robert

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o

rm
a

li
ze

d
 E

n
er

g
y

 &
 E

x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(c) Sharpen

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o

rm
a

li
ze

d
 E

n
er

g
y

 &
 E

x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(d) BinominalOption

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o

rm
a

li
ze

d
 E

n
er

g
y

 &
 E

x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(e) DwtHaar1D

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o
rm

a
li

ze
d

 E
n

er
g
y
 &

 E
x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(f) Back Propagation

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o
rm

a
li

ze
d

 E
n

er
g
y
 &

 E
x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(g) K-Nearest Neighbor

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

RAU Size (Number of rows)

N
o
rm

a
li

ze
d

 E
n

er
g
y
 &

 E
x
ec

u
ti

o
n

 T
im

e

0

20

40

60

80

100

R
A

U
 A

ct
iv

a
ti

o
n

(%

)

(h) K-means

Fig. 7. Energy consumption and performance speedup of running applications on tunable enhanced GPGPU architecture, normalized to conventional GPGPU.
The RAU activation shows the ratio of hits in RAU to total hits in FPU. For each application and each RAU size this activation is set in order to guarantees
the quality of service.

TABLE I
ENERGY IMPROVEMENT, PERFORMANCE SPEEDUP AND QUALITY LOSS

(QL) OF RAU-BASED COMPUTATION IN DIFFERENT SIZES.

RAU Size (# rows) 16 32 64 128 256 512 1024
Energy Improv. 14× 9.6× 6.2× 3.7× 2.0× 1.3× 1.1×

Speedup 7.5× 5.7× 4.0× 2.9× 2.1× 1.8× 1.4×
Quality Loss (QL)

RAU Size (# rows) 16 32 64 128 256 512 1024
Sobel 64% 59% 59% 37% 24% 16% 11%

Robert 25% 27% 25% 24% 16% 8% 7%
Sharpen 98% 90% 75% 36% 32% 27% 24%

Binom 76% 63% 47% 34% 26% 18% 14%
DwtHaar 24% 17% 11% 9% 7% 5% 2%
Backprop 28% 17% 11% 5% 2% 1% 1%

KNN 11% 5% 2% 1% 0% 0% 0%
K-means 13% 10% 4% 1% 0% 0% 0%

from 16-rows improves applications quality by storing more highly
frequent patterns. However, this accuracy improvement saturates in
large RAU, because the additional rows contain lower frequency
patterns, resulting in diminishing error reductions. Although RAU
runs much faster and energy efficiently in small RAU sizes, the
computation accuracy is not acceptable for those cases. Therefore,
we require a large RAU block to provide acceptable accuracy,
which results in lower energy and performance improvement. For
instance, using 1024 row RAU can only provide required accuracy
for Sobel application, with minor energy/performance improve-
ment compare to conventional GPGPU architecture. Looking at
machine learning algorithms, RAU can provide higher quality of
service running them on stand-alone mode. The result shows that
k-means algorithm can provide acceptable quality of clustering (for
ML algorithm defined as QL< 2%) when working with 128-rows
RAU or larger. Similarly, other learning algorithms can provide
acceptable quality when using small RAU sizes. Our evaluations
show that running machine learning algorithms on stand-alone
RAU (256-rows) provides 2.0× and 2.1× energy improvement and
speedup compare to conventional GPU using FPUs.

D. Hybrid FPU-RAU Computing
In order to keep the RAU small, but maintain acceptable accu-

racy, we assign a portion of input data to GPU FPUs to process.
To support this functionality, our design compares inputs with
minimum distance and, in the case of significant distance from the
input key (>threshold), assigns them to precise FPUs to process.
Fig. 7 shows the RAU activation running each application which
ensures the quality of service (QL< 10% for general application
and QL< 2% for machine learning). RAU activation defines as
the portion of time that input data processes by RAU. As we
expected, large RAU size increases computation accuracy. When
using small RAU, the major part of application’s computation need
to be executed on precise FPUs. Fig. 7 shows the normalized
energy consumption and execution time of enhanced GPGPU
in different RAU sizes running five general GPGPU and three
machine learning applications. In each RAU size, both energy and
execution time have been normalized to energy and runtime of
GPGPU without any RAU blocks. Our evaluation shows that in
small RAU, increasing the RAU size positively impacts energy im-
provement and speed up of associative memory, because increasing
the number of rows improves computation accuracy which allows
us to assign fewer computations to FPUs.

However, in most applications, RAU larger than 32 rows
degrades computation energy and performance, because beyond
32 rows the highly frequent patterns have already been stored
in RAU and adding additional low frequency patterns cannot
improve hit rate or accuracy significantly. Considering the average
EDP improvement over all applications shows that using 32 rows
RAU results in best EDP compared to other RAU sizes.

Table II shows the EDP improvement of different applications
running on proposed enhanced GPGPU with 32 rows RAU block.
We compare the efficiency of proposed design with state-of-the-
art approximate GPGPU using approximate memristive associa-
tive memory (A2M2) [32] and resistive configurable associative
memory (ReCAM) [19]. We use the best A2M2 and ReCAM con-
figurations which result in maximum energy savings. In A2M2,
we used 8-row TCAM under different voltage overscaling levels

TABLE II
EDP IMPROVEMENT AND QUALITY LOSS IN ENHANCED GPGPU WITH, A2M2 , ReCAM AND PROPOSED RAU.

GPGPU Sobel Robert Sharpen Binomial DwtHaar Back Prop KNN K-means

A2M2 [32] Hamming Distance 1-bit 2-bit 2-bit 1-bit 2-bit 0-bit 2-bit 1-bit
EDP improvement 1.56× 1.69× 1.51× 1.19× 1.33× 1× 1.72× 1.65×

QL (%) 8.3 9.2 8.4 6.1 8.9 NA 1.8 0.9

ReCAM [19] Relaxed rows 20 24 20 12 28 16 24 24
EDP improvement 2.43× 2.22× 1.92× 1.20× 2.15× 1.87× 2.01× 2.43×

QL (%) 7.4 8.4 9.2 7.4 9.7 1.9 1.6 1.2

RAU RAU activation 57% 67% 63% 51% 46% 89% 100% 99%
EDP improvement 3.61× 5.12× 4.27× 2.95× 2.58× 5.14× 10.73× 11.41×

QL (%) 6.1 8.9 6.4 9.1 7.4 0 0.9 0

to enable inexact matching with different Hamming distances.
In ReCAM, the search computation in 32-row TCAM relaxes in
selective rows (in 4-row granularity) to provide maximum energy
savings. However, the performance of GPU enhanced by these
two designs has been bounded by FPU pipeline stage. Therefore,
they cannot provide any computation speedup. Our evaluation
shows that accepting 10% and 2% quality loss for general and
machine learning applications, the enhanced GPGPU with A2M2

and ReCAM provide 31% and 49% energy savings (1.45× and
2.02× EDP improvement) for eight tested applications. While
GPGPU enhanced with the proposed RAU can provide 61% energy
savings and 2.2× speed up (5.72× EDP improvement) compared
to traditional GPGPU. At the same level of accuracy, EDP im-
provement of proposed design is 2.8× higher than state-of-the-art
approximate GPGPU design [19].

We consider the overhead of RAU on the GPGPU architecture.
As we pointed in Section III, in hybrid mode the RAU does not
change the FPU clock frequency, thus our design would not not
work slower than conventional GPGPU (with no RAU). In terms of
area overhead, our evaluation shows that using 64-row RAU next
to each FPU (which provides maximum efficiency) can result in
1.9% area overhead. This area overhead is negligible considering
the energy and performance efficiency that our design can provide.

VI. CONCLUSION

In this paper, we propose a resistive associative unit, which
can approximately perform memory-based computation instead of
beside traditional processor cores. RAU models basic computa-
tions by storing their high frequency input patterns and searching
for nearest distance input at runtime. RAU can tune the level of
computation accuracy by adaptively finding low frequency data
and assigning them to precise cores to process. Our evaluation
shows that integrating RAU beside GPGPU floating point units
results in 61% lower energy consumption and 2.2× speedup when
compared to GPGPU, while also ensuring acceptable quality of
service. In term of energy-delay product, proposed design achieves
5.7× and 2.8× improvement compare to traditional GPGPU and
state-of-the-art approximate GPGPU, respectively.

VII. ACKNOWLEDGMENT

This work was supported by NSF grants #1730158 and
#1527034.

REFERENCES
[1] J. Gubbi et al., “Internet of things (iot): A vision, architectural elements, and future

directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[2] D. Miorandi et al., “Internet of things: Vision, applications and research challenges,”
Ad Hoc Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[3] B. Yao et al., “Multifractal analysis of image profiles for the characterization and
detection of defects in additive manufacturing,” Journal of Manufacturing Science
and Engineering, 2017.

[4] S. Ghoreishi et al., “Adaptive uncertainty propagation for coupled multidisciplinary
systems,” AIAA Journal, pp. 1–11, 2017.

[5] M. Imani et al., “Maximum-likelihood adaptive filter for partially observed boolean
dynamical systems,” ITSP, vol. 65, no. 2, pp. 359–371, 2017.

[6] M. Imani et al., “Low-power sparse hyperdimensional encoder for language recogni-
tion,” IEEE Design & Test, vol. 34, no. 6, pp. 94–101, 2017.

[7] Z. Vasicek et al., “Evolutionary approach to approximate digital circuits design,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 3, pp. 432–444, 2015.

[8] S. Venkataramani et al., “Approximate computing and the quest for computing
efficiency,” in Proceedings of the 52nd Annual Design Automation Conference,
p. 120, ACM, 2015.

[9] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech recogni-
tion,” 2017.

[10] M. Imani et al., “Nngine: Ultra-efficient nearest neighbor accelerator based on in-
memory computing,” 2017.

[11] V. Gupta et al., “Impact: imprecise adders for low-power approximate computing,”
in Proceedings of the 17th IEEE/ACM international symposium on Low-power
electronics and design, pp. 409–414, IEEE Press, 2011.

[12] T. Kohonen, Associative memory: A system-theoretical approach, vol. 17. Springer
Science & Business Media, 2012.

[13] M. Imani et al., “Exploring hyperdimensional associative memory,” in HPCA,
pp. 445–456, IEEE, 2017.

[14] Y. Kim et al., “Orchard: Visual object recognition accelerator based on approximate
in-memory processing,” in ICCAD, 2017.

[15] M. S. Riazi et al., “Camsure: Secure content-addressable memory for approximate
search,”

[16] M. Imani et al., “Efficient query processing in crossbar memory,” in ISLPED, pp. 1–6,
IEEE, 2017.

[17] M. N. Bojnordi et al., “Memristive boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning,” in High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on, pp. 1–13, IEEE, 2016.

[18] S. M. Seyedzadeh et al., “Pres: Pseudo-random encoding scheme to increase the bit
flip reduction in the memory,” in DAC, pp. 1–6, IEEE, 2015.

[19] M. Imani et al., “Resistive configurable associative memory for approximate comput-
ing,” in 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1327–1332, IEEE, 2016.

[20] M. Imani et al., “Approximate computing using multiple-access single-charge asso-
ciative memory,” TETC, 2016.

[21] M. Imani et al., “Multi-stage tunable approximate search in resistive associative
memory,” TMSCS, 2017.

[22] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge tcam for
approximate computing,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 373–378, IEEE, 2016.

[23] M. Imani et al., “Processing acceleration with resistive memory-based computation,”
in MEMSYS, pp. 208–210, ACM, 2016.

[24] M. Imani et al., “Acam: Approximate computing based on adaptive associative
memory with online learning.,” in ISLPED, pp. 162–167, 2016.

[25] J. Sim et al., “Enabling efficient system design using vertical nanowire transistor
current mode logic,”

[26] M. Imani et al., “Remam: low energy resistive multi-stage associative memory for
energy efficient computing,” in ISQED, pp. 101–106, IEEE, 2016.

[27] J.-M. Arnau et al., “Eliminating redundant fragment shader executions on a mobile
gpu via hardware memoization,” in 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), pp. 529–540, IEEE, 2014.

[28] A. Goel et al., “Small subset queries and bloom filters using ternary associative
memories, with applications,” ACM SIGMETRICS Performance Evaluation Review,
vol. 38, no. 1, pp. 143–154, 2010.

[29] Y. Kim et al., “Cause: critical application usage-aware memory system using non-
volatile memory for mobile devices,” in ICCAD, pp. 690–696, IEEE, 2015.

[30] M. V. Beigi et al., “Tesla: Using microfluidics to thermally stabilize 3d stacked stt-
ram caches,” in Computer Design (ICCD), 2016 IEEE 34th International Conference
on, pp. 344–347, IEEE, 2016.

[31] C. J. Xue et al., “Emerging non-volatile memories: opportunities and challenges,”
in Proceedings of the seventh IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pp. 325–334, 2011.

[32] A. Rahimi et al., “Approximate associative memristive memory for energy-efficient
gpus,” in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1497–1502, IEEE, 2015.

[33] M. Imani et al., “Resistive cam acceleration for tunable approximate computing,”
IEEE Transactions on Emerging Topics in Computing, 2017.

[34] M. Imani et al., “Nvalt: Non-volatile approximate lookup table for gpu acceleration,”
Embedded Systems Letters, 2017.

[35] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose approximate pro-
grams,” in Proceedings of the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 449–460, IEEE Computer Society, 2012.

[36] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled memristors,”
TCAS II, vol. 62, no. 8, pp. 786–790, 2015.

[37] R. Ubal et al., “Multi2sim: a simulation framework for cpu-gpu computing,” in
Proceedings of the 21st international conference on Parallel architectures and
compilation techniques, pp. 335–344, ACM, 2012.

