
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-So�ware Co-design to Accelerate Neural Network Applications

MOHSEN IMANI, RICARDO GARCIA, SARANSH GUPTA, and TAJANA ROSING, University of
California San Diego

Many applications, such as machine learning and data sensing are statistical in nature and can tolerate some level of inaccuracy in their
computation. A variety of designs have been put forward exploiting the statistical nature of machine learning, through approximate
computing. With approximate multipliers being the main focus due to their high usage in machine learning designs. In this paper, we
propose a novel approximate floating point multiplier, called CMUL, which significantly reduces energy and improves performance of
multiplication while allowing for a controllable amount of error. Our design approximately models multiplication by replacing the most
costly step of the operation with a lower energy alternative. In order to tune the level of approximation, CMUL dynamically identifies
the inputs which produces the largest approximation error and processes them in precise mode. In order to use CMUL for deep neural
network (DNN) acceleration, we propose a framework which modifies the trained DNN model to make it suitable for approximate
hardware. Our framework adjusts the DNN weights to a set of ”potential weights” that are suitable for approximate hardware. Then,
it compensates the possible quality loss by iteratively retraining the network. Our evaluation with four DNN applications shows that,
CMUL can achieve 60.3% energy efficiency improvement and 3.2× energy-delay product (EDP) improvement as compared to the
baseline GPU, while ensuring less than 0.2% quality loss. These results are 38.7% and 2.0× higher than energy efficiency and EDP
improvement of the CMUL without using the proposed framework.

CCS Concepts: •Computer systems organization→ Architectures; •Computing methodologies→ Machine learning;

Additional Key Words and Phrases: Approximate computing, Neural network, Floating point unit, Energy efficiency

ACM Reference format:
Mohsen Imani, Ricardo Garcia, Saransh Gupta, and Tajana Rosing. 2010. Hardware-Software Co-design to Accelerate Neural Network
Applications. ACM Comput. Entertain. 9, 4, Article 39 (March 2010), 16 pages.
DOI: 0000001.0000001

1 INTRODUCTION
In 2015, the number of smart devices around the world exceeded 25 billion. This number is expected to double by
2020 (Atzori et al. 2010; Gantz and Reinsel 2011). Many of these devices have batteries with strict power constraints, so
the need for systems that can efficiently handle the computing requirements of data-intensive workloads is undeniable (Ji
et al. 2012; Khoshavi et al. 2016). Deep neural networks (DNNs) have been effectively used for diverse classifica-
tion problems, such as image processing, video segmentation, speech recognition, computer vision, health-care, and
manufacturing (Hinton et al. 2012; Imani et al. 2018b,c; LeCun et al. 2010; Oquab et al. 2014; Salamat et al. 2018).
Running DNNs on the general purpose processors is slow, energy hungry, and prohibitively expensive (Krizhevsky et al.
2012). Machine learning applications are stochastic in heart, thus they do not need highly accurate computation. So, by
accepting slight inaccuracy, instead of doing all computation precisely, we can get significant energy and performance
improvements (Han and Orshansky 2013; Imani et al. 2016d). Therefore, many traditional and state-of-the-art computing
systems use floating point units (FPUs) (Courbariaux et al. 2014; Razlighi et al. 2017). For such algorithms of high
energy and performance high power is required. To cover the same dynamic range, the fixed point unit must be five times
larger and 40% slower than a corresponding floating point (Liang et al. 2003). Similarly, many DNN applications require
floating-point precision due to the fact that the iterative training algorithm often update the parameters using gradients
whose values are too small to sustain the additive quantization noise (Lin and Talathi 2016).

Multiplication is one of the most common and costly FP operations, slowing down the computation in many applications
such as signal processing, neural networks, and streaming processes (Imani et al. 2016c; Suhre et al. 2013). Multiplication
cost can be reduced by designing an approximate multiplication unit. Most of prior work attempted to reduce the bit-size

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2010 ACM. Manuscript submitted to ACM

Manuscript submitted to ACM 1



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

2 Imani, M. et al

Fig. 1. Approximate multiplication of proposed CMUL between A ad B operands.

of multiplication to enable approximation (Hashemi et al. 2015; Narayanamoorthy et al. 2015). However, either the lack
of accuracy tuning or the large area requirements of the tuned designs, significantly reduce the advantages provided by
such approximation.

In this paper, we instead propose a configurable floating point multiplication, called CMUL, which significantly
improves the multiplication energy consumption by trading off accuracy. CMUL avoids the costly multiplication when
calculating the fractional part of a floating point number by adding the input mantissas, instead of multiplying them.
To tune the level of accuracy, our design checks the number of consecutive 0’s and 1’s on the first N bits of both input
mantissas. The larger sequence of continuous bit, the higher accuracy CMUL multiplication can achieve. In order to use
CMUL for deep neural network (DNN) acceleration, we propose a framework which modifies the trained DNN model to
make it suitable for approximate hardware. Our framework adjusts the DNN weights to a set of ”potential weights” that
are suitable for approximate hardware. Then, it compensates the possible quality loss by iterative retraining the network
based on the existing constraints. We evaluate the efficiency of the proposed approach on AMD GPU architecture by
replacing the conventional FPUs with the proposed CMUL. Our evaluations on four DNN applications show that, CMUL
can achieve on average 60.3% energy efficiency and 3.2× energy-delay product (EDP) improvement as compared to the
baseline GPU, while ensuring less than 0.2% quality loss. These results are 38.7% and 2.0× higher energy efficiency and
EDP improvement of the CMUL without using the proposed framework.

The rest of paper is organized as follow: Section 2 and Section 3 review the related work and background. Section 4
describes the proposed approximate multiplications. Section 6 describes the supported framework to accelerate neural net-
work applications on approximate hardware. The hardware integration has been described in section 5. The experimental
results are presented in Section 7. Finally, Section 8 concludes the paper.

2 RELATEDWORK
2.1 Approximate Computing
There are several commonly examined approaches to approximate computing: voltage over scaling (VOS), use of
approximate hardware blocks, and use of approximate memory units. VOS involves dynamically reducing the voltage
supplied to a hardware component to save energy, but at the expense of accuracy. Error rates for VOS can be modeled
to determine the trade-off between energy and accuracy for applications, allowing voltage to be lowered until an error
threshold is reached (Imani et al. 2017c; Krause and Polian 2011). However, the circuit is sensitive to any variations, and
if the operating voltage of a circuit is decreased too far, timing errors begin to appear.

Another strategy is the application of Non-volatile memories (NVM) to create approximate memory units, for energy
efficient storage and computing purposes (Gnawali et al. 2018; Imani et al. 2016d; Kim et al. 2015). In computing, the
goal of this approach is to store common inputs and their corresponding outputs. This style of associative memory can
retrieve the closest output for given inputs in order to reduce power consumption (Imani et al. 2016a,b; Peroni et al. 2019).
This approach does not work well in applications without a large number of the redundant calculations. Associative
memory can be integrated into FPUs reduce these redundancies.

Approximate hardware involves redesigning basic component blocks to save energy, at the cost of accurate output (Ca-
mus et al. 2016; Hashemi et al. 2015; Lin and Lin 2013; Liu et al. 2014). Liu et al. utilize approximate adders to create
an energy efficient approximate multiplier (Liu et al. 2014). Hashemi et al. designed a multiplier that selects a reduced
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 3

number of bits used in the multiplication to conserve power (Hashemi et al. 2015). Camus et al. propose a speculative
approximate multiplier combines gate-level pruning and an inexact speculative adder to lower power consumption and
shrink FPU area (Camus et al. 2016). All the methods adopt to operation accuracy needed at runtime. They only have
one level of approximation that is independent of the inputs. In contrast to previous work, we design a configurable
approximate floating point multiplier which approximately processes data using an input mantissa directly in the output.
In addition, we propose a framework which fixes one of the multiplication operands in neural network in order to
significantly reduce the error of approximate hardware.

2.2 Neural Network
Modern neural network algorithms are executed on diverse types of processors such as GPU, FPGAs, and ASIC
chips (Ciresan et al. 2011; Han et al. 2016; Iandola et al. 2016; Imani et al. 2017b; Nazemi et al. 2018; Razlighi et al.
2017). Prior work tried to use fixed-point quantized numerals to improve the efficiency of DNN (Lin et al. 2016). Work
in (Lin et al. 2015) exploited trained binary parameters to avoid multiplication. However, many applications require
floating-point precision since the iterative DNN training algorithm often update the parameters using gradients whose
values are too small to sustain the additive quantization noise (Lin and Talathi 2016). In contrast, our proposed design
uses floating-point precision rather than confining the parameters to binary numerals.

Other efficient way to improve the DNN efficiency is model compression. For example, work in (Han et al. 2015)
trained sparse models with shared weights to compress the model. The compressed parameters of (Han et al. 2015)
can be used to realize ASIC/FPGA accelerators (Han et al. 2016). However, compression does not help with execution
on general purpose processors, in which case the compressed parameters should be decompressed into the original
parameters. Dimensionality reduction is investigated for efficient execution of DNNs (Imani et al. 2018a). These methods
are orthogonal to our proposed CMUL, since CMUL only reduces the cost of hardware computation with minimal impact
of quality loss.

3 DEEP NEURAL NETWORKS
A DNN model consists of multiple layers which have multiple neurons. These layers are stacked on top of each other in a
hierarchical formation, that is, the output of each layer is forwarded to the next layer. The output of the last layer is used
for inference. Figure 2 shows the structure of a fully connected layer in a neural network. The computation in a single
layer of neural network can be modeled as a vector-matrix multiplication, which involves large amount of multiplications.
However, floating point operations are costly and energy hungry. Multiplication is the most commonly used floating point
operation in both learning and multimedia applications (Han and Orshansky 2013; Hashemi et al. 2015). For example,
looking at image filters such as Sobel filter, Robert filter, we observed that about 85% of floating point arithmetic involve
multiplication. The neuron takes a vector of neuron values from the preceding layer X = 〈X0, · · · ,Xn〉, then computes its
output as follows:

where Wi and Xi correspond to a weight and an input respectively, b is a bias parameter, and ϕ is a nonlinear activation
function.

3.1 IEEE 754 Standard
In floating point notation, a number consists of three parts: a sign bit, an exponent, and a fractional value. In IEEE 754
floating point representation, the sign bit is the most significant bit, where bits 31 to 24 hold the exponent value, and
the remaining bits contain the fractional value, also known as the mantissa. The exponent bits represent a power of two
ranging from -127 to 128. The mantissa bits store a value between 1 and 2, which is multiplied by 2exp to give the decimal
value.

FPU multiply follows the steps shown in Figure 1. First, the sign bit of A×B =C is calculated by XORing the sign
bit of the A and B operands. Second, the effective value of the exponential terms are added together. Finally, the two
mantissa values are multiplied to provide the result’s mantissa. Because the mantissa ranges from 1 to 2, the output of the

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4 Imani, M. et al

Fig. 2. General structure of DNN in fully connected layer

Fig. 3. CMUL Integration with N tuning bits.

multiplication always fall between 1 and 4. If the output mantissa is greater than 2, it is normalized by dividing by 2 and
increasing the exponent by 1.

3.2 Limitations
Recently, work in (Imani et al. 2017a) proposed a configurable floating point multiplier (CFPU), which adaptively
multiplies the input operands. CFPU decides to run the multiplication in exact or approximate mode depending on the
input mantissas. However, CFPU relies on one input to approximate which results in errors that range from 0% to 50%
works in approximate mode only when one of the input mantissa has N leading one or zero bits (N is a tuning bits). This
reduces the number of inputs that CFPU can process in approximate mode. In section 4, we explain the functionality
of the proposed approximate multiplier, then in Section 6, we explain the framework this approximate multiplier to
accelerate DNN on GPU architecture.

4 PROPOSED APPROXIMATE MULTIPLIER
In floating point multiplication, the mantissa multiplication is the most costly operation which takes about 80% of the
total multiplication energy (Imani et al. 2017a). Here we propose CMUL to accelerate floating point multiplication by
eliminating the costly mantissa multiplication. Our design XORs two input sign bits to get the output sign bit. The two
input exponents are added to calculate the output exponent. Finally, instead of multiplying the two mantissas, we add
two mantissas and used the result as the mantissa for the output. The result shows that when we replaced the mantissa
multiplication with addition, the error rate is less than or equal to 11.1%. Figure 4 shows the error distribution of 1 million
random approximations executed by CMUL and CFPU. The result shows that CMUL has higher accuracy than the CFPU
with no tuning. Due to a lower error rate without tuning, our design is able to approximate a large amount of numbers,
resulting in speedup and energy efficiency improvement.
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 5

Fig. 4. Histogram of error distribution for proposed design and CFPU.

Fig. 5. Accuracy distribution of proposed design as the # of consecutive 1’s or 0’s changes.

4.1 Tuning Accuracy
Although proposed approximate multiplication provides high energy savings, the accuracy of computation is heavily
impacted depending on the application. For some applications, with quantized inputs, e.g., Sharpen filter, the proposed
design can work precisely with no quality loss. In addition, many recognition algorithms, such as motion tracking and
plate detection applications, only need to quantify changes in the input data. Therefore, the approximate multiplication
can be nearly exact for such applications.

In order to ensure the desired accuracy is achieved we design a tuning method that allows the design to operate only
when the approximation is at the desired error rate. The tuning process consists of checking the N number of consecutive
0’s or 1’s in both of the input mantissas, if one of the inputs has the minimum required N value the design will operate in
approximation mode. Figure 5 shows the error distribution of random approximations as the value of N changes. The
data shows that as N increases exponentially the error rate decreases as the number of consecutive 1’s or 0’s found in one
of the input mantissa.

In order to show the level of accuracy that can be achieved with the proposed design, random inputs with different N
values were generated and input into the CFPU and CMUL in order to compare maximum and average error rates. Figure 6
shows that as N increases the error rate goes to zero for both maximum error and average error rate for both designs. The
data also shows that the proposed design is far better in both average error rate and maximum error. Comparing both
designs, the CFPU has a larger maximum and average error rate for low N values whereas the proposed design has a
significantly lower maximum and average error rate for low N values. This is significant since the lower the N value the
more inputs the approximation design can approximate. Thus the proposed design can handle a greater number of inputs
than the CFPU with higher accuracy which will result in less energy and higher speeds since more multiplications would
be able to be approximated.

An example of CMUL multiplication is shown in Figure 7 for two 32-bit floating point numbers in precise FPU and
proposed CMUL with N = 5. The conventional FPU finds the product of A =−65 and B = 10 by adding the exponents

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

6 Imani, M. et al

1 2 3 4 5 6 7 8

N (# of Consecutive Bits)

-5

0

5

10

15

20

25

30

A
v
e
ra

g
e
 E

rr
o

r 
R

a
te

 (
%

)
Proposed Design

CFPU

(a)

0 1 2 3 4 5 6 7 8

N (# of Consecutive Bits)

0

5

10

15

20

25

30

35

40

45

50

55

M
a
x
im

u
m

 E
rr

o
r 

(%
) CFPU

Proposed Design

(b)

Fig. 6. (a) Average Error Rate and (b) maximum Error of CMUL using di�erent N tuning bits

Fig. 7. An example of 32-bit multiplication in conventional precise FPU and proposed CMUL using N=5 tuning bits.

and multiplying the two mantissa, while XORing the sign bit to find three parts of the output data. In contrast, our design
first checks both of the input mantissas for N consecutive 0’s or 1’s, if one of the mantissas contains the desired or exceeds
the desired number of consecutive 0’s or 1’s. In this example, since the input operand mantissa of A has a leading zero
in the mantissa the N number of consecutive 0’s is checked. In this example N = 5 and the mantissa of A also has five
consecutive 0’s the design will proceed with the approximation. However, if the set value of N was larger then five, the
design would run the exact mode instead of approximation. In application N is selected based on the maximum error
rate the application can tolerate, with accuracy increasing with higher N value, however if a lower or higher error rate is
required N can be changed accordingly. When one of the input operands meets the tuning condition, the multiplication
processes in approximate mode. In the example shown in Figure 7, the approximation results is -648, while the exact
multiplication gets -650. If a higher accuracy is desired, increasing the value of N would allow the design to only
approximate values that are under a certain threshold.

5 CMUL INTEGRATION
5.1 AMD GPU Architecture
We integrated the proposed CMUL in a GPU southern Island architecture, Radeon HD 7970 device. The architecture of
GPU has been shown in Figure 8. This GPU has 32 compute units, where each contains a scheduler and a set of four
SIMD execution units. Each SIMD execution unit has 16 cores, which gives a total number of 64 cores per compute
unit. Each streaming core consists of both integer and floating point units. We replace all multipliers in floating point
multiplier (MUL), multiply-accumulator (MAC) and multiplier-addition (MAD) units with the proposed CMUL. Every
time an application launches, all GPU cores are configured as approximation level. CMUL is a modified version of the
standard floating point multiplier in GPUs which uses hardware modification to support approximation.
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 7

R

Ai-1

Vdd

Clk

Clk

Sense Circuitry

RSense

Cnt

Vdd

Vdd

R

A0

R

Ai

R

Ai-N+1

R

Ai-N

Mantissa

 Multiplier

Mantissa 
Adder

Tuning

En

En

O
u

tp
u

t 

M
a

n
ti

ss
a
 

A

QApprox

M
U

X

Zero

En

Local Memory

Wavefront Scheduler

Compute Unit

SIMD 

Unit 1

SIMD 

Unit 4

Ultra-threaded Dispatcher

Compute 

Unit 1

Compute 

Unit 32

Global Memory

Compute Device

… …

Vector/Scalar RF

SIMD Unit

Stream Core 16

INT

Stream Core 2

Stream Core 3

…

In
str

u
c
tio

n
 F

e
tc

h
/D

e
c
o
d

e
r

FPU

B

QExact

(a) (b)

Fig. 8. (a) The architecture of AMD Radeon HD 7970 GPU. (b) circuitry to support tuning the level of approximation in CMUL.

Fig. 9. Framework to support tunable approximation.

5.2 CMUL Hardware Support
Figure 8b shows the circuitry to support CMUL accuracy tuning. Our design looks at the first N mantissa bits of both input
operands to check the tuning condition. If the tuning condition is satisfied in either input mantissas, our design adds the
mantissa of the input operands to generate the mantissa of the multiplication output. Otherwise, similar to conventional
FPUs the multiplication of the input operand mantissas generates the output multiplication mantissa. Similarly, to tune
the level of approximation, our design uses N bits (after the first mantissa bit) of the selected mantissa to decide when
to perform mantissa multiplication or approximate it. The number of tuning bits sets the level of approximation, with
each additional bit reducing the maximum error by half. The goal is to check the value of the Ai−1, ...,Ai−N to make
sure they are the same. As Figure 8b shows, the tuning circuitry is a simple transistor-resistor circuitry which samples
the match-line (ML) voltage to detect the Ai−1,Ai−2, ...,A0 input operand. In case of any 1-bit in a mantissa, the sense
amplifier will detect changes in the ML voltage (ML=1). The circuitry also needs to select the inverted values of the
tuning bits for the circuitry to search. To detect the 1 bit on Ath

i−1, ..., Ath
0 indices on CMUL, the sense amplifier Clk needs

to be set to 250ps. Based on the results, we can dynamically change the sampling time to balance the ratio of the running
input workload on the approximate CMUL core. For each application, this sampling time can individually set in order to
provide target accuracy.

For DNN application, CMUL hardware support do not need to use tuning circuitry, since the software framework
always ensures that the DNN weights satisfy the tuning condition. Therefore, CMUL always works in approximate mode
and adds the mantissa of the input operands to generate the mantissa of the multiplication output. The conventional 32-bit
floating point multiplier takes 7690 µm2 area. In order to enable CMUL functionality, the conventional multiplier needs
to use extra 23-bit fixed-point adder and a tuning circuit. Our evaluation using Synopsys Design Compiler shows that the
adder and the tuning logic consumes 101.5 µm2 and 28.3µm2 area respectively. Thus, the CMUL has a 1.68% larger
area as compared to the conventional floating point units. This area overhead is negligible considering the flexibility and
efficiency that the CMUL can provide.

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

8 Imani, M. et al

Fig. 10. The overview of the proposed framework in adjusting the DNN weights to a set which is suitable for approximate hardware.

We propose an automated framework to fine tune the level of approximation and satisfy required required accuracy
while providing the maximum energy savings. Figure 9 shows the proposed framework consisting of the accuracy tuning
and accuracy measurement blocks. The framework starts by putting CMUL in the maximum level of approximation.
Then, based on the user accuracy requirement, it dynamically decreases the level of approximation until computation
accuracy satisfies the user desired quality. For each application, this framework returns the optimal number of CMUL
tuning which provides maximum energy and performance efficiency.

6 DNN ACCELERATION FRAMEWORK
6.1 Overview
In this section, we describe a novel framework to accelerate DNN applications on the approximate GPU architecture. As
we explained, the enhanced GPU is configurable, thus it can be used in a similar way as other applications to accelerate
DNN. However, we observe that using this method, there are a few numbers to satisfy the tuning condition. On the
other hand, DNNs during inference use a set of fixed weight values. Our framework ensures that DNNs use a weight
representation which is suitable for our new approximate hardware. Adjusting the DNN weights ensure the proposed
CMUL has minimum error rate when multiplying input and weights. Figure 10 shows the overview of the proposed
framework. In the first step, we get the DNN model by training the network (•1 ). Our framework adjusts the weights by
quantizing them to a closest value which satisfies the tuning condition (•2 ). The adjusted model inputs the DNN and
the accuracy of the new network checks over the validation dataset (•3 ). This accuracy is compared with the baseline
trained model (∆e = eAd justed − eBaseline). If the quality loss due to model adjustment is less than ε , we use the adjusted
model for the rest of classification (•5 ), otherwise we retrain the network using the adjusted weights (•6 ). This iterative
process continues until the error condition is met or the algorithm runs for a pre-specified number of epochs. Note that
the retraining approach is general and it improves the classification accuracy regardless of approximate hardware. In other
words, the retraining framework adapts network to work with the existing constraints. In the following we explain the
details of the proposed framework.

6.2 Weight Modification
The DNN computation involves many of multiplications between the input vector and weight matrix. These multiplications
can be accelerated by processing on approximate hardware. However, the error of the approximate hardware, described
in Section 4, depends on the input operand values. As we showed in section 4, the multiplication of input and weight
elements has low error rate when one of the input operands have a specific representation. In particular, when one of the
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 9

Fig. 11. An example of speech recognition accuracy during di�erent retraining iterations (N = 5).

mantissas starts with a continues sequence of 0s or 1s, our approximate multiplication results in much lower error rate.
The upper bound of the multiplication error rate can be controlled depending on the length of the sequence.

Here, we use the idea of weight modification to adjust the DNN weights such that they become suitable for underlying
approximate hardware. The DNN training gives us weights which do not usually have our desired pattern. We modify
the trained DNN model to force the weights to follow a particular pattern. Our framework first generates a list of all
”potential weights” which are suitable for approximate hardware. These numbers are all floating point values which have
N consecutive 0s or 1s in the start of their mantissa. Our framework looks at each trained weight in neural network and
assigns it to a closet value in potential weights list (•2 ). In case, if the potential weights include large number of values
(small N), there will be very small change in each DNN weight, so DNN model may work with the same accuracy as
original DNN model. However, weights with small N, run on approximate hardware with larger error. Using a potential
weight with large N, the approximate hardware will have significantly low error rate. However, the modified weights will
be far from the original DNN weights, so it will result in larger change in DNN accuracy. In fact, there is a trade-off
between hardware and software in enabling approximation. Our framework enables software approximation by limiting
the values that DNN weights can take. The more limitation on the weights to get patterns with large N, it results in
higher software approximation. However, this reduces the level of approximation in hardware, as each multiplication can
perform with lower error. To compensate for the software approximation error, a retraining of the network is done and
then the optimal N value is selected such that the total hardware+software approximation error is minimized.

6.3 Error Compensation
Limiting the weight is often accompanied by some degree of additive error, ∆e = eAd justed-eBaseline(•3 ). This error is a
difference of the DNN accuracy using baseline and adjusted model. After each model adjustment iteration, our framework
compares the ∆e with the ε value (•4 ). If the condition is not satisfied, our framework retrains the neural network to
find a new model adopted with the current constraints. After each retraining iteration, all DNN weights again map
to a closest value in ”potential weight” list. This process continues for several iterations until ∆e is less than ε or the
number of iteration passes the maximum epochs (•5 ). Figure 11 shows an example of speech recognition (Dheeru and
Karra Taniskidou 2017) accuracy during retraining iterations when the mantissa of the DNN weights are forced to start
with N = 4 consecutive 0s or 1s. Our result shows that in the first iterations, the weight limitation has significantly impact
on the classification accuracy. However, our framework can completely compensate the possible quality loss by retraining
the network for several iterations (∆e = 0%).

Table 1 shows the error of different DNN applications, when we limit the potential weights to values which satisfy
required approximation, specified by user. We tested the impact of our framework on four different DNN applica-
tions including: handwritten digits recognition (MNIST) (LeCun et al. 1998), speech recognition (ISOLET) (Dheeru
and Karra Taniskidou 2017), activity recognition (UCIHAR) (Anguita et al. 2013), and object recognition (CIFAR-
10) (Krizhevsky and Hinton 2009). Our evaluation shows that for application such as MNIST and ISOLET, our framework
can compensate the quality loss when using weights with N equal or less than 4. However, for applications such as
CIFAR, 0% quality loss can be achieved using weight with N = 2.

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Imani, M. et al

Table 1. Error loss of di�erent applications when the weight are adjusted to a list with a defined N tuning condition.

N 1 2 3 4 5 6 7
MNIST 0 0 0 0 0.40% 0.89% 1.93%
ISOLET 0 0 ˜0% 0.06% 0.53% 1.71% 2.86%
UCIHAR 0 0 0.07% 0.33% 0.42% 1.16% 2.49%
CIFAR-10 0 ˜0% 0.10% 0.45% 0.97% 2.33% 3.21%

Table 2. DNN models and baseline error rates for 4 applications (Input layer - IN, Fully connected layer - FC, Convolution layer - C,
and Pooling layer - PL.)

Dataset Network Topology Error
MNIST IN : 784, FC : 512, FC : 512, FC : 10 1.5%
ISOLET IN : 617, FC : 512, FC : 512, FC : 26 3.6%
UCIHAR IN : 561, FC : 512, FC : 512, FC : 19 1.7%

CIFAR-10
IN : 32×32×3,CV : 32×3×3,PL : 2×2,

CV : 64×3×3,CV : 64×3×3,FC : 512, FC : 10 100 14.4%

Table 3. Comparing the energy, and performance of the CMUL and previous designs.

Power(mW) Delay(ns) EDP (pJs) Tuned Error Tunable No Tuning Error
CMUL 3 0.15 1.1 0.18 6.3% Yes 11.1%

CFPU3 (Imani et al. 2017a) 0.17 1.6 0.44 6.3% Yes 50%
DRUM6 (Hashemi et al. 2015) 0.29 1.9 1.04 6.3% No NA

ESSM8 (Narayanamoorthy et al. 2015) 0.28 2.1 1.2 11.1% No NA
Kulkarni (Kulkarni et al. 2011) 0.82 3.5 10.0 22.2% No NA

7 RESULTS
7.1 Experimental Setup
We integrated the proposed approximate CMUL on the floating point units of an AMD Southern Island GPU, Radeon
HD 7970 device. We modified Multi2sim, a cycle accurate CPU-GPU simulator (Ubal et al. 2012) to model the CMUL
functionality in three main floating point units in GPU architecture: multiplier, multiplier-accumulator (MAC) and
Multiplier-then-adder (MAD). We evaluated power of conventional FPUs using Synopsys Design Compiler and optimized
for power using Synopsys Prime Time for 1ns delay in 45-nm ASIC flow (Compiler 2000). The circuit level simulation of
CMUL has been performed using HSPICE simulator in 45-nm TSMC technology. We test the efficiency of enhanced GPU
on eleven general OpenCL applications: Sobel, Robert, Mean, Laplacian, Sharpen, Prewit, QuasiRandom, FFT, Mersenne,
DwHaar1D and Blur. In these applications, roughly 85% of the floating point operations involve multiplication.

7.2 Benchmarks and DNN Models
Table 2 lists the baseline neural network topologies running four applications and their error rates for train and test modes.
For all four datasets, we compare the baseline accuracy of the train and inference phases with those when using the
proposed CMUL framework. We compare the designs in terms of run time and power consumption. Stochastic gradient
descent with momentum (Sutskever et al. 2013) is used for training. The momentum is set to 0.1, the learning rate is set
to 0.001, and a batch size of 10 is used. Dropout (Srivastava et al. 2014) with drop rate of 0.5 is applied to hidden layers
to avoid over-fitting. The activation functions are set to “Rectified Linear Unit” clamped at 6. A “Softmax” function is
applied to the output layer.

Handwritten Image Recognition (MNIST): MNIST is a popular machine learning data set including images of
handwritten digits (LeCun et al. 1998). The objective is to classify an input picture as one of the ten digits {0 . . . 9}.
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 11

Table 4. Normalized Energy-delay product (EDP) and quality loss (QL) of the GPU enhanced with CFPU in di�erent tuning mode.

Tuning bits Sobel Robert Mean Laplacian FFT Mersenne DwtHaar1D Blur
EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL

1 bit 0.11 2.43% 0.13 0.45% 0.15 0.27% 0.17 0.37% 0.11 9.18% 0.15 4.29% 0.14 11.09% 0.17 6.24%
2 bit 0.14 1.13% 0.15 0.17% 0.16 0.14% 0.18 0.21% 0.28 5.19% 0.23 2.37% 0.17 8.2% 0.26 2.93%
3 bits 0.16 0.21% 0.16 0.06% 0.19 0.03% 0.19 0.02% 0.37 3.1% 0.31 1.9% 0.25 4.1% 0.37 0.03%
4 bits 0.17 0.01% 0.17 ˜0% 0.23 ˜0% 0.20 0.01% 0.41 1.07% 0.36 0.62% 0.29 1.98% 0.42 0.09%
5 bits 0.18 ˜0% 0.17 ˜0% 0.25 ˜0% 0.21 ˜0% 0.46 0.43% 0.44 0.11% 0.36 0.30% 0.51 0.02%

Table 5. Normalized EDP and QL of the GPU enhanced with CMUL in di�erent tuning mode.

Tuning bits Sobel Robert Mean Laplacian FFT Mersenne DwtHaar1D Blur
EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL EDP QL

1 bit 0.08 2.09% 0.11 0.35% 0.14 0.09% 0.09 0.37% 0.10 7.26% 0.12 3.02% 0.10 8.42% 0.11 4.36%
2 bit 0.12 0.94% 0.13 0.07% 0.13 0.06% 0.14 0.09% 0.22 3.56% 0.18 1.33% 0.13 5.77% 0.20 1.05%
3 bits 0.13 0.35% 0.14 0.01% 0.16 0.02% 0.15 0.01% 0.30 1.17% 0.24 0.63% 0.21 1.8% 0.33 0.01%
4 bits 0.13 0.02% 0.14 ˜0% 0.17 ˜0% 0.16 0% 0.36 0.41% 0.32 0.12% 0.25 0.24% 0.27 ˜0%
5 bits 0.15 ˜0% 0.15 ˜0% 0.21 ˜0% 0.19 ˜0% 0.42 0.14% 0.39 0.03% 0.31 0.12% 0.42 ˜0%

Voice Recognition (ISOLET): Many mobile applications require online processing of vocal data. We evaluate
lookNN with the Isolet dataset (Dheeru and Karra Taniskidou 2017) which consists of speech collected from 150 speakers.
The goal of this task is to classify the vocal signal to one of the 26 English letters.

Human Activity Recognition (UCIHAR): For this data set, the objective is to recognize human activity based on
3-axial linear acceleration and 3-axial angular velocity that have been captured at a constant rate of 50Hz (Anguita et al.
2013).

Object Recognition (CIFAR): CIFAR-10 (Krizhevsky and Hinton 2009) are two datasets each of which includes
50000 training and 10000 testing images belonging to 10 classes, respectively. The goal is to classify an input image
to the correct category, e.g., animals, airplane, automobile, ship, truck, etc. For the two datasets, we exploit similar
topologies based on convolution layers (CV), but they have different numbers of neurons in the last FC layer according to
the number of classes.

7.3 Approximate Multipliers
To understand the advantage of proposed design, we compare the energy consumption and delay of the proposed CMUL
with the state-of-the-art approximate multipliers proposed in (Hashemi et al. 2015; Imani et al. 2017a; Kulkarni et al.
2011; Narayanamoorthy et al. 2015). The application of previous designs limits to a small range of robust and error
tolerant applications, as they are not able to tune the level of accuracy in runtime. In contrast, the proposed CMUL
dynamically finds the inaccurate data and processes them in precise mode. CMUL tunes the level of accuracy at runtime
based on the user accuracy requirement. This makes the application of CMUL general. It should be noted that the
proposed framework is general and can work properly on other large scale datasets. For example, as prior work in (Imani
et al. 2018c) showed, CMUL can get minimal quality loss even for larger datasets such as ImageNet.

Table 3 lists the power consumption, critical path delay, and energy-delay product of CMUL alongside previous work
in (Imani et al. 2017a), (Hashemi et al. 2015), (Narayanamoorthy et al. 2015) and (Kulkarni et al. 2011) in their best
configurations. Our evaluation shows that at the same level of accuracy, the proposed design can achieve 2.4× EDP
improvement compared to the state-of-the-art approximate multipliers.

7.4 Tunable CMUL
We show the efficiency of the CFPU by running different multimedia and general streaming applications on the enhanced
GPU architecture. We consider 10% average relative error as an acceptable accuracy metric for all applications, verified
by (Esmaeilzadeh et al. 2012). We tune the level of approximation by checking the N bits of mantissa in the input

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

12 Imani, M. et al

Fig. 12. �ality loss of di�erent DNN applications due to so�ware/framework and hardware approximation using di�erent tuning
bits (N).

operands. If all N tuning bits in one of the input mantissa is 0 or 1, the multiplication runs in approximate mode,
otherwise it runs precisely by multiplying the mantissa of input operands. For each application, Table 4 and Table 5
show the normalized energy-delay product (EDP) and quality loss of different applications running on approximate GPU
enhanced by CPU and CMUL respectively. For both designs, we change the number of tuning bit from 1 (none) to 5
bits. The results are normalized to the EDP of the GPU using conventional FPUs. Increasing the number of tuning bits
improves the computation accuracy by processing the far and inaccurate multiplications in precise mode. On the other
hand, more number of tuning bits slows down the computation, because a larger portion of data is processed on precise.
Our experimental evaluation shows that running applications on proposed CFPU provides 3.1× EDP improvement as
compared to a GPU using conventional FPUs, while ensuring less than 1% quality of loss. Our results in Table 5 shows
that CMUL can achieve 2.7× higher EDP improvement as compared to CFPU design while providing the same quality of
computation.

7.5 CMUL & DNN Acceleration
In order to provide large efficiency, we design a framework which adapts DNN to run on approximate hardware. Using
our framework, the DNN quality loss may be happened by both software and hardware. Figure 12 shows the quality loss
different DNN applications running on proposed approximate hardware. The x-axis in figure shows the N, the sequence
of the 0s and 1s at the mantissa of the weight. For example, N = 4 ensures that all DNN weights have four consecutive
0s or 1s in the first N bits their mantissas. The lines in the figure show the breakdown of quality loss coming from
software framework and proposed approximate hardware. The results show that increasing the N parameter from 1 to 6,
the software framework approximation starts increasing due to weight constraint applied by the framework. Using large
N, the DNN do not have good flexibility to assign proper weights to DNN, thus it results in large quality loss. From other
hand, the quality loss due to hardware approximation has reverse relation to N value. Using large N, the approximate
multiplier can achieve lower error. Figure 12 also shows the total DNN quality loss due to both software and hardware
approximation. Our result shows that applications provide optimum quality loss using different N values. For example,
MNIST can achieve to minimum 0% quality loss using N = 3 and 4, while ISOLET can achieve to 0.05% quality loss
using N = 4.

One major advantage of our proposed framework is that CMUL does not need to check the N for each DNN application.
Regardless of the N value, CMUL always takes the same time/energy to run a DNN application. Figure 13 and Figure 14
Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 13

Fig. 13. Energy e�iciency improvement of the enhanced GPU with and without DNN framework support.

report the energy consumption and energy-delay product (EDP) of the DNN applications running on the enhanced-GPU
with and without supported framework. All results are relative to the energy and EDP of the conventional GPU using
exact FPUs. Our evaluation shows that using the framework our design can achieve to the same energy efficiency and EDP
improvement, regardless of the value of N. In fact, our framework can approach full hardware approximation (CMUL
always runs in approximate mode). However, the approximate GPU with no supported framework runs partially in
approximate mode. The results show that this hit rate and energy efficiency is usually too small when the N becomes large.
In addition, for every input, CMUL with no framework needs to pay the overhead of checking the tuning condition. Our
result shows that CMUL with supported framework can achieve 60.3% and energy efficiency and 3.2× EDP improvement
as compare to the baseline GPU, while they ensure less than 0.2% quality loss for tested applications. At the same level
of accuracy, these results are 38.7% and 2.0× higher than energy efficiency and EDP improvement of the CMUL with no
supported framework.

Table 6 compares the EDP improvement of the CMUL using the proposed DNN framework with CMUL and
CFPU (Imani et al. 2017a) with no framework support. Our evaluation shows that CMUL using framework has less
than 0.5% quality loss over all applications. To provide the same quality of classification, CMUL and CFPU with no
framework support need to run the computation in a configuration very close to the precise mode, thus they do not provide
much advantage as compared to conventional GPU. In addition, CMUL using framework ensures that all multiplications
can run in approximate mode, this results in significantly performance improvement. In contrast, in CMUL and CFPU
with no framework support, the slowest thread with the least number of multiplications in approximate mode, bounds
the GPU performance. To further improve the EDP of the CMUL and CFPU, one can put the multiplications in deeper
approximate mode. However, this results in significantly quality loss. The results in Table 6 shows that even with 2%
(4%) quality loss, CMUL and CFPU without framework support provide 2.5× and 2.8× (1.9× and 2.2×) lower EDP
improvement as compared to CMUL which ensures less than 0.5% quality loss.

8 CONCLUSION
In this paper, we propose a configurable floating point multiplier which can approximately perform the computation
with significantly lower energy and performance cost. The proposed approximate multiplication has tuning capability by
adaptively process each new piece of data precisely. We also proposed a framework to accelerate DNN applications with
our approximate FPU. Our framework modifies the training of the DNN to make it suitable for underlying approximate
hardware. Our evaluations on four DNN applications show that, CMUL can achieve 60.3% and energy efficiency and

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

14 Imani, M. et al

Fig. 14. Energy-delay product of enhanced GPU with and without DNN framework support.

Table 6. Comparing the EDP improvement of CMUL with and without DNN framework with CFPU design.

QL=0.5% QL=2% QL=4%

CMUL
CMUL

No Framework
CFPU

CMUL
No Framework

CFPU
CMUL

No Framework
CFPU

MNIST 3.34× 1.06× 1.02× 1.25× 1.12× 1.56× 1.40×
ISOLET 3.53× 1.15× 1.12× 1.18× 1.06× 1.45× 1.30×
UCIHAR 3.01× 1.07× 1.03× 1.29× 1.17× 1.62× 1.46×
CIFAR-10 2.68× 1.08× 1.04× 1.28× 1.15× 1.60× 1.44×

3.2× energy-delay product (EDP) improvement as compared to the baseline GPU, while they ensure less than 0.2%
quality loss as compared to precise hardware. These results are 38.7% and 2.0× higher than energy efficiency and EDP
improvement of the CMUL without using the proposed framework. Another main advantage of the proposed framework
is its generality, as it can be applied on any approximate multiplier.

ACKNOWLEDGMENTS
This work was partially supported by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, and
also NSF grants #1730158 and #1527034.

REFERENCES
Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. 2013. A Public Domain Dataset for Human Activity Recognition

using Smartphones.. In ESANN.
Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer networks 54, 15 (2010), 2787–2805.
Vincent Camus, Jeremy Schlachter, Christian Enz, Michael Gautschi, and Frank K Gurkaynak. 2016. Approximate 32-bit floating-point unit design with

53% power-area product reduction. In European Solid-State Circuits Conference, ESSCIRC Conference 2016: 42nd. Ieee, 465–468.
Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen Schmidhuber. 2011. Flexible, high performance convolutional neural

networks for image classification. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, Vol. 22. Barcelona, Spain, 1237.
Design Compiler. 2000. Synopsys inc.
Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. 2014. Low precision storage for deep learning. arXiv preprint Arxiv:1412.7024 (2014).
Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural acceleration for general-purpose approximate programs. In Proceedings of

the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 449–460.

Manuscript submitted to ACM

http://archive.ics.uci.edu/ml


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Hardware-Software Co-design to Accelerate Neural Network Applications 15

John Gantz and David Reinsel. 2011. Extracting value from chaos. IDC iview 1142, 2011 (2011), 1–12.
Self Prasad Gnawali, Seyed Nima Mozaffari, and Spyros Tragoudas. 2018. Low Power Spintronic Ternary Content Addressable Memory. IEEE Transactions

on Nanotechnology (2018).
Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design. In Test Symposium (ETS), 2013 18th

IEEE European. IEEE, 1–6.
Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J Dally. 2016. EIE: efficient inference engine on compressed

deep neural network. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on. IEEE, 243–254.
Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman

coding. arXiv preprint arXiv:1510.00149 (2015).
Soheil Hashemi, R Bahar, and Sherief Reda. 2015. DRUM: A dynamic range unbiased multiplier for approximate applications. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, 418–425.
Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen,

Tara N Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine 29, 6 (2012), 82–97.

Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. 2016. Firecaffe: near-linear acceleration of deep neural network training on
compute clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2592–2600.

Farhad Imani, Changqing Cheng, Ruimin Chen, and Hui Yang. 2018a. Nested Gaussian Process Modeling for High-Dimensional Data Imputation in
Healthcare Systems. In IISE 2018 Conference & Expo, Orlando, FL, May. 19–22.

Mahdi Imani, Seyede Fatemeh Ghoreishi, and Ulisses M Braga-Neto. 2018b. Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor
Environments. In Advances in Neural Information Processing Systems.

Mohsen Imani, Yeseong Kim, Abbas Rahimi, and Tajana Rosing. 2016a. Acam: Approximate computing based on adaptive associative memory with online
learning. In Proceedings of the 2016 International Symposium on Low Power Electronics and Design. ACM, 162–167.

Mohsen Imani, Pietro Mercati, and Tajana Rosing. 2016b. ReMAM: low energy resistive multi-stage associative memory for energy efficient computing. In
Quality Electronic Design (ISQED), 2016 17th International Symposium on. IEEE, 101–106.

Mohsen Imani, Shruti Patil, and Tajana S Rosing. 2016c. MASC: Ultra-low energy multiple-access single-charge TCAM for approximate computing. In
Proceedings of the 2016 Conference on Design, Automation & Test in Europe. EDA Consortium, 373–378.

Mohsen Imani, Daniel Peroni, Yeseong Kim, Abbas Rahimi, and Tajana Rosing. 2017b. Efficient neural network acceleration on gpgpu using content
addressable memory. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1026–1031.

Mohsen Imani, Daniel Peroni, and Tajana Rosing. 2017a. CFPU: Configurable floating point multiplier for energy-efficient computing. In Design Automation
Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 1–6.

Mohsen Imani, Abbas Rahimi, Pietro Mercati, and Tajana Rosing. 2017c. Multi-stage tunable approximate search in resistive associative memory. IEEE
Transactions on Multi-Scale Computing Systems (2017).

Mohsen Imani, Abbas Rahimi, and Tajana S Rosing. 2016d. Resistive configurable associative memory for approximate computing. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 1327–1332.

Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta, Farinaz Koushanfar, and Tajana Rosing. 2018c. RAPIDNN: In-Memory Deep Neural
Network Acceleration Framework. arXiv preprint arXiv:1806.05794 (2018).

Changqing Ji, Yu Li, Wenming Qiu, Uchechukwu Awada, and Keqiu Li. 2012. Big data processing in cloud computing environments. In Pervasive Systems,
Algorithms and Networks (ISPAN), 2012 12th International Symposium on. IEEE, 17–23.

Navid Khoshavi, Xunchao Chen, Jun Wang, and Ronald F DeMara. 2016. Read-Tuned STT-RAM and eDRAM Cache Hierarchies for Throughput and
Energy Enhancement. arXiv preprint arXiv:1607.08086 (2016).

Yeseong Kim et al. 2015. CAUSE: critical application usage-aware memory system using non-volatile memory for mobile devices. In Computer-Aided
Design (ICCAD), 2015 IEEE/ACM International Conference on. IEEE, 690–696.

Philipp Klaus Krause and Ilia Polian. 2011. Adaptive voltage over-scaling for resilient applications. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2011. IEEE, 1–6.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. (2009).
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural

information processing systems. 1097–1105.
Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading accuracy for power with an underdesigned multiplier architecture. In VLSI Design

(VLSI Design), 2011 24th International Conference on. IEEE, 346–351.
Yann LeCun, Corinna Cortes, and Christopher JC Burges. 1998. The MNIST database of handwritten digits.
Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. 2010. Convolutional networks and applications in vision. In Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International Symposium on. IEEE, 253–256.
Jian Liang, Russell Tessier, and Oskar Mencer. 2003. Floating point unit generation and evaluation for FPGAs. In Field-Programmable Custom Computing

Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on. IEEE, 185–194.
Chia-Hao Lin and Chao Lin. 2013. High accuracy approximate multiplier with error correction. In 2013 IEEE 31st International Conference on Computer

Design (ICCD). IEEE, 33–38.
Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quantization of deep convolutional networks. In International Conference on

Machine Learning. 2849–2858.
Darryl D Lin and Sachin S Talathi. 2016. Overcoming challenges in fixed point training of deep convolutional networks. arXiv preprint arXiv:1607.02241

(2016).
Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio. 2015. Neural networks with few multiplications. arXiv preprint

arXiv:1510.03009 (2015).
Cong Liu, Jie Han, and Fabrizio Lombardi. 2014. A low-power, high-performance approximate multiplier with configurable partial error recovery. In

Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 1–4.
Srinivasan Narayanamoorthy, Hadi Asghari Moghaddam, Zhenhong Liu, Taejoon Park, and Nam Sung Kim. 2015. Energy-efficient approximate

multiplication for digital signal processing and classification applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23, 6
(2015), 1180–1184.

Mahdi Nazemi, Amir Erfan Eshratifar, and Massoud Pedram. 2018. A hardware-friendly algorithm for scalable training and deployment of dimensionality
reduction models on FPGA. arXiv preprint arXiv:1801.04014 (2018).

Manuscript submitted to ACM



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

16 Imani, M. et al

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning and transferring mid-level image representations using convolutional neural
networks. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 1717–1724.

Daniel Peroni et al. 2019. ALook: Adaptive Lookup for GPGPU Acceleration. In IEEE ASP-DAC. IEEE, 1–7.
Mohammad Samragh Razlighi, Mohsen Imani, Farinaz Koushanfar, and Tajana Rosing. 2017. Looknn: Neural network with no multiplication. In 2017

Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1775–1780.
Sahand Salamat et al. 2018. RNSnet: In-Memory Neural Network Acceleration Using Residue Number System. In Rebooting Computing (ICRC), 2018

IEEE International Conference on. IEEE, 1–10.
Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks

from overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.
Alexander Suhre, Furkan Keskin, Tulin Ersahin, Rengul Cetin-Atalay, Rashid Ansari, and A Enis Cetin. 2013. A multiplication-free framework for signal

processing and applications in biomedical image analysis. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 1123–1127.

Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. 2013. On the importance of initialization and momentum in deep learning. ICML (3)
28 (2013), 1139–1147.

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012. Multi2Sim: a simulation framework for CPU-GPU computing. In
Parallel Architectures and Compilation Techniques (PACT), 2012 21st International Conference on. IEEE, 335–344.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Related Work
	2.1 Approximate Computing
	2.2 Neural Network

	3 Deep Neural Networks
	3.1 IEEE 754 Standard
	3.2 Limitations

	4 Proposed Approximate Multiplier
	4.1 Tuning Accuracy

	5 CMUL Integration
	5.1 AMD GPU Architecture
	5.2 CMUL Hardware Support

	6 DNN Acceleration Framework
	6.1 Overview
	6.2 Weight Modification
	6.3 Error Compensation

	7 Results
	7.1 Experimental Setup
	7.2 Benchmarks and DNN Models
	7.3 Approximate Multipliers
	7.4 Tunable CMUL
	7.5 CMUL & DNN Acceleration

	8 Conclusion
	Acknowledgments
	References

