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ABSTRACT 
The Internet of Things (IoT) dramatically increases the amount of 
data to be processed for many applications including multimedia. 
Unlike traditional computing environment, the workload of IoT 
significantly varies overtime. Thus, an efficient runtime profiling is 
required to extract highly frequent computations and pre-store them 
for memory-based computing. In this paper, we propose an 
approximate computing technique using a low-cost adaptive 
associative memory, named ACAM, which utilizes runtime 
learning and profiling. To recognize the temporal locality of data in 
real-world applications, our design exploits a reinforcement 
learning algorithm with a least recently use (LRU) strategy to select 
images to be profiled; the profiler is implemented using an 
approximate concurrent state machine. The profiling results are 
then stored into ACAM for computation reuse. Since the selected 
images represent the observed input dataset, we can avoid 
redundant computations thanks to high hit rates displayed in the 
associative memory. We evaluate ACAM on the recent AMD 
Southern Island GPU architecture, and the experimental results 
shows that the proposed design achieves by 34.7% energy saving 
for image processing applications with an acceptable quality of 
service (i.e., PSNR>30dB). 
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1. INTRODUCTION 
Going toward the Internet of Things (IoT) and the big data 
computation significantly increases the size of input data on the 
recent processors. In this era, many IoT workloads are going to be 
run on the GPUs in either mobiles or the clouds such as data 
centers. In particular, multimedia processing as an instance of IoT 
workload have rapidly proliferated, and to achieve timely 
performance demand, they require to be accelerated using efficient 
massive parallel processors [1, 2]. In addition, due to locality of 
dataset, similar computations repeatedly happen, thus giving an 
opportunity to significantly reduce the amount of computations 
based on memory-based computations [3]. To this end, an 
associative memory in the form of a lookup table has been exploited 
to reduce the number of redundant computations. A software 
implementation pre-stores frequent patterns on a hash table and 
retrieves them using a set of keys that replace original 
computations. In order to enhance the performance of the lookup 
table, associative memories can be implemented in hardware using 
ternary content addressable memory (TCAM). 

However, to utilize TCAMs in computation-with-memory [4], there 
are two technical challenges. First, the system design has to 

consider the actual workloads which keep changing rapidly over 
different contexts such as time, place, and applications. Market 
research shows significant growth on interactions with external 
environment using sensor employments. Therefore, it is obvious 
that filling associative memories with offline data, on design time, 
cannot provide desirable hit rates [5]. Since with today’s interactive 
IoT workloads, we need to have a context-aware associative 
memory which should adapt to the environment. Therefore, 
runtime profiling is one the essential components of the associative 
memories for their practical deployment on parallel processors. 
Second, CMOS-based TCAMs consume very high energy for the 
search operation. This limits the applicability of these memories to 
classification and IP routing [6]. Non-volatile memories (NVMs) 
open a new field to have an efficient memory-based computation  
[7]. Resistive random access memory (ReRAM) and spin-transfer 
torque RAM (STT-RAM) are two kinds of low leakage and dense 
NVMs which are based on memristive and magnetic tunneling 
junction (MTJ) devices respectively. Moreover, NVM-based 
TCAMs can further reduce energy consumption by applying 
voltage over scaling (VOS) [8] or reducing the search switching 
activity [9]. 

In this paper, we propose a novel approximate computing 
framework using an adaptive associative memory, called ACAM, 
with a capability of learning-based runtime profiling. The proposed 
design also addresses the endurance and cost issues of associative 
memories for online learning, thus providing a robust and practical 
solution for a wide range of dynamic workloads on parallel 
processor architectures. Our design goal is to find the best input 
data with higher hit rate to adaptively fill the rows of an associative 
memory and improve overall energy. The learning-based profiling 
runs in the following steps: (i) Machine learning algorithm finds 
the image of interest from input dataset based on pixel similarities. 
The algorithm identifies the most represented data, which is likely 
to be used in the near future, for profiling based on the proposed 
TD-LRU policy. (ii) We profile the selected images of interest 
based on a low-cost approximate concurrent state machine to keep 
track of the number of repeated computations. The approximate 
profiling is implemented using hash functions and a bloom filter, 
thus enhancing energy efficiency at the expense of minimal 
acceptable errors. In the circuit-level design, to address the 
endurance and the lifetime issues caused by frequent runtime 
updates, ACAM exploits high endurance and robust MTJ-based 
TCAM and memory block. In addition, we apply approximation for 
a selected part of associative memory to balance the tradeoff 
between energy and accuracy. Thanks to the proposed method with 
an efficient runtime profiling, parallel processors can efficiently 
process a large and active dataset with a support of the adaptive 
associative memory. Our evaluation shows that the proposed 
ACAM improves the energy efficiency of GPGPU by 34.7% with 
acceptable PSNR (peak signal-to-noise ratio) of more than 30dB 
for image processing applications.  

2. RELATED WORK 
Non-volatile memories such as ReRAM and STT-RAM are good 
candidate to design an efficient and low leakage power associative 
memories [7] [10] [11]. Earlier efforts have used these ReRAM and 
STT-RAM technologies to design a stable and efficient TCAM. 
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However the endurance of ReRAMs limits to 106-107 write 
operations while the endurance of STT-RAMs is very high (>1015) 
[12]. Thus, efficient MTJ-based TCAM cell was proposed to 
address the ReRAM endurance problem [13].  

With the development of the efficient TCAM designs, the 
associative memory exploits the high number of pattern similarities 
to decrease the amount of computations [5, 14-17]. In such 
computation-with-memory techniques, the associative memory 
consists of two main blocks: a TCAM for an input lookup table and 
a memory for output data. Since a streaming core processes the 
workload while executing an instruction with operands (e.g., $r1 
and $r2 for “add $r1, $r2” instruction,) the TCAM pre-stores some 
operands for frequent input patterns while the corresponding 
outputs is stored in the memory. In the actual computation, input 
operands of an executed instruction is compared to all TCAM rows 
in parallel, and in a case of a hit (if any), the system stops the 
processor computation by using the clock-gating technique. Then, 
a signal on the matched line activates the corresponding line of the 
memory to retrieve the output of the computation. Low energy 
consumption of the NVM-based associative memory motivates 
many use cases of the memory-based computation, including query 
processing [18], search engine, text processing [19], image 
processing [20], pattern recognition and data mining [21].  

Recent work mainly target to use the memory-based computation 
to improve the computation efficiency. In GPUs, Zhang, et al. [22] 
leverage VOS for “imprecise” Floating Point Units (FPUs). 
However, imprecise blocks such as the SRAM-based look-up 
tables suffer from high error rate when applying VOS [22]. Rahimi, 
et al. in [17] used a memristor-based look-up table to increase the 
computational reuse in GPGPUs. Imani et al. proposed a 
configurable approximate associative memory architecture to 
reduce the TCAM energy consumption by applying selective VOS 
[8]. Multi-access single charge TCAM has been proposed to reduce 
the search energy consumption by reducing the number of updates 
on the CAM [23, 24]. Multi-stage search associative memory is 
another design which exploits selective row activation and in-
advance precharging to respectively improve energy consumption 
and mitigating the overhead of sequential access. These previous 
NVM-based associative memories initialize the TCAM block with 
the offline profiling data without the update capability because of 
limited endurance of resistive associative memories. However, 
since running dataset can be significantly changed over different 
contexts in reality, the design-time offline profiling, which sticks to 
a limited sample size, is not suitable to choose represented dataset. 
It limits the applicability of the use of the associative memory on 
the parallel processors.  

In this paper, we proposed an associative memory with online 
learning to address the main limitation in enabling approximate 
computation on the real GPU architectures. In the proposed design, 
learning algorithm finds the best input dataset of interest for 
profiling; then, an approximate concurrent state machine profiles 
selected inputs at runtime. Our evaluation shows that the proposed 
design achieves significantly high energy efficiency based on the 
online learning especially for running applications with large 
dataset.  

3. DESIGN OF PROPOSED ACAM  
In this section, we describe our proposed approximate computing 
framework, ACAM, in detail. In order to fill the TCAM with highly 
reusable data, the proposed technique selects representative inputs 
as profiling candidates using an online learning at runtime. This 
strategy enables two main advantages. First, filling the TCAM 
adaptively with the consideration of data locality increases the 
TCAM hit rate. Thus, by increasing the average time that the FPU 
is in the clock gating mode, it improves system energy efficiency 
as well. Second, the runtime profiling allows us the memory-based 
computation on the real systems. For example, the runtime 
profiling selects representative dataset while handling not only 
multiple applications and but also newly installed applications 
which cannot be considered in the design time. In addition, we can 
change the TCAM pre-stored data based on the contexts. 

Figure 1 illustrates the architectural overview of the proposed 
ACAM. The execution flow of the system has three main steps. 
First, we use an efficient online learning algorithm to find proper 
dataset for profiling by intelligently identifying input image 
patterns. After that, the approximation profiler, which uses the 
concurrent state machine [25, 26], profiles operands for 
instructions, and identify frequent patterns approximately. Based 
on the profiled result, we fill the proposed associative memories 
with frequently observed operands which will be likely to appear 
in future computations. Then, the GPU device can process executed 
instructions using the pre-stored data. We next describe the key 
component of our approximate computing design, GPU processing 
with the proposed adaptive associative memory. 

SQRT: {a1} à {q1}

MUL: {c1, d1} à {q1}

ADD: {a1, b1} à {q1}

MAC: {a1, b1, c1} à {q1}

Image 0

Image 1

Image 2

SQRT FPUAM

AM

AM

AM

MUL FPU

ADD FPU

MAD FPU

GPU Device

Image 3

(V-value)

Representative Images

High frequent patterns 

(HFP)

Select weighted 

patterns

Profiling

Dataset AM 

Updater

Approximate 

Concurrent 

State Machine

Online 

Learning

Learning

Processing

 

Figure 1. An architectural overview of the proposed ACAM 

3.1 Associative Memory Design for GPU 
In the proposed GPGPU architecture, we consider four key 
instructions: adder (ADD), multiplier (MUL), square root (SQRT) 
and multiply accumulator (MAC). Each instruction is computed on 
four FPUs (floating-point units) of each streaming core. Beside 
each stream core we deploy four associative memories 
corresponding to each computation. Two 32-bit input operands are 
given for ADD and MUL, one 32-bit operand for SQRT and three 
32-bit operands for MAC. Each associative memory keeps profiled 
operand signatures in each row. Since the profiler is designed to 
give the signatures for frequent operands, the GPU processing can 
have higher chances to reuse the pre-stored output in the associative 
memory. 
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Figure 2. Associative memory structure of ACAM 

Figure 2 shows the associative memory structure of the proposed 
associative memory. This memory consists of three blocks: hash 
functions, a TCAM and a STT-RAM. First, once an instruction is 
executed with operands on each FPU, the hash functions produce 
signatures of the operands, and the signature is searched through all 
TCAM rows. Using the TCAM technology, this search operation 
can be carried out in a single cycle. The hit in any TCAM rows 
stops the processor computation by activating the clock gating 
mode. Finally, TCAM hit activated the corresponding line of the 
STT-RAM memory to read the precomputed output data. 



In this memory design, there is a key technical challenge which can 
be caused from working with the runtime updating. Most of the 
high speed and stable TCAMs are designed with resistive memory. 
The lifetime of these memories limit to 106-107 number of writes. 
The limited endurance avoids using TCAMs with high number of 
TCAM updates. In order to design an efficient associative memory 
for frequent run-time updating, we exploit the MTJ-based TCAM 
which is characterized by high endurance. Most of MTJ-based 
TCAMs [27] (e.g. 6T-2MTJ) have low sense margin and a long 
search delay (~2.1ns). Thus, to provide better performance for 
search operations, we use the 5T-4MTJ TCAM structure [16] 
which also has the capability of complementary search operations. 
5T-4MTJ improves the sense margin of the cell to 240mV and 
increases the large ML (match line) swing which results in a sub-
1.3ns search operation. In addition, the 5T-4MTJ provides high 
energy efficiency by doing a search operation with 
0.68fJ/search/bit, which is suitable for the adaptive updates. As 
shown in Figure 2, the data is saved on the TCAM complementary 
using the values of MTJ1 and MTJ2. In the search operation, the 
drivers pre-charge the MLs. In turn, SL and SL-bar signals activate 
the access transistors. At the same time, the PL drives put the input 
search signal on PL1 and PL2 lines. In case of a mismatch on an 
input signature, the middle node of the cell (node A) turns to zero, 
and the leakage current through M5 discharges the ML.  

The outputs of profiled operand signatures are stored in the STT-
RAM as shown in the right side of Figure 2. The STT-RAM 
memory consists of a transistor and an MTJ device. To write in 
STT-RAM, EnL lines are selecting target cells and a write voltage 
is applied on the bitline. In the read mode, the EnL value is 
activated by the TCAM block to read a corresponding line of the 
STT-RAM. The sense amplifier of the STT-RAM is resistive-based 
and works with a sense resistor (RSense). 

In most cases, a large size of TCAMs in a view of the word-size 
and the number of rows can provide higher hit rate. However, for 
the large size of TCAMs, high search energy consumption degrades 
total processing energy efficiency, and the long word size exhibits 
low cell stability due to the cell leakage. Moreover, the TCAM with 
many rows results in high energy consumption and slow 
performance for search operations due to the slow input buffer. 
Thus, it is required to fill the TCAM rows with reusable data, i.e., 
that have high probability for hit rate, while compensating the 
search energy of the associative memory. Next, we describe our 
learning and profiling methodology how to fill the TCAM rows 
with highly reusable data. 

3.2 Online Learning-based Image Selection  
In order to efficiently utilize the memory-based computation on the 
proposed GPU, the AM must keep the best precomputed data which 
will appear in the future. However, the design-time decision for 
pre-stored data cannot adapt workload changes. Moreover, even 
though we have whole large input dataset in the design time, due to 
the variety of applications and users, it is impossible to maintain all 
useful data in the limited memory area. Therefore, we utilize a 
runtime profiling methodology. The main challenge here is how to 
select the representative input dataset which are good to be profiled 
for future computations. We design our selection strategy based on 
the temporal locality of dataset. In reality, input multimedia images 
usually exhibit two important characteristics: (i) a similar image 
group is processed repeatedly and (ii) the groups can be changed 
over time mainly due to the context changes such as time of day 
and place [28]. For example, if the user takes pictures outside at 
night, the pictures would be characterized as a group whose 
background is mostly dark. In this case, since the computations on 
stream cores would be also similar, they are good candidates to be 
reused the computed data. As time goes by, the set of groups is 
likely to be changed due to the change of contexts, thus affecting 
the set of representative images. Our image selection policy, called 
TD-LRU, is designed to address these two characteristics as shown 
in Figure 3. 

The first step is to characterize images groups while defining their 
future usability. We exploit temporal difference (TD) learning [29], 

which is an algorithm of the reinforcement learning class. The TD-
LRU maintains 𝑘 states which represent 𝑘 image groups of interest. 
When an input image is given for every iteration, each state gets a 
reward value based on its pixel similarity to the input image.  For 
example, more similar image groups gets higher reward values. 
More formally, for M states, 𝑆1, 𝑆2, … 𝑆𝑀, the algorithm manages a 

vector, 𝑉𝑡 =< 𝑉𝑡
𝑆1 , 𝑉𝑡

𝑆2 , … , 𝑉𝑡
𝑆𝑀 > where each vector element has 

an accumulated reward value of each tracked state for each iteration 

t. Once an input image is given at t-th iteration, each element 𝑉𝑡
𝑆𝑖  is 

updated as follows. 

𝑉𝑡
𝑆𝑖 = 𝑅𝑡

𝑆𝑖 + 𝛾 ∙ 𝑉𝑡−1
𝑆𝑖  

In this equation, 𝑅𝑡
𝑆𝑖  is the reword value for the pixel similarity 

between the input image and the tracked image of the state 𝑆𝑖 
(where 0 ≤ 𝑅𝑡

𝑆𝑖 ≤ 1), and the parameter 𝛾 balances the impact of 
the obtained reward on the previous V-values. A large γ updates the 
V-values with more consideration of the accumulated rewards of 
previous stages, while a small γ prioritizes the effect of the current 
reward in each state. In this paper we set the value of γ by 0.95. 
Thus, once an input is given, each state is updated by their pixel 
similarities while giving higher priority for the previous rewards. 
Therefore, frequently observed image groups will have higher 
values in the vector over time, and they are considered as the good 
candidates to be profiled. We select top N images in the vector as 
the images of interest (where 𝑁 ≤ 𝑀). 

In order to consider the second characteristic, i.e., the temporal 
locality of image groups, we maintain another vector, 𝑄𝑡 =<
𝑄𝑡
𝑆1 , 𝑄𝑡

𝑆2 , … , 𝑄𝑡
𝑆𝑀 >, which tracks the temporal access pattern of the 

image groups based on a LRU (Least Recently Used) policy. TD-
LRU considers the images with less than a threshold reward, 𝑇𝑎𝑐𝑐, 

as non-matched states. According to this criteria, 𝑄𝑡
𝑆𝑖  increases by 

1 if non-matched, otherwise it is reset to 0. Thus, the image groups 
which have not been accessed for a long time will have a large value 
in the vector. In each iteration, if the rewards with all current states 
are less than a threshold, 𝑇𝑛𝑒𝑤, we consider this input as a new 
learning state. Until the k states are all set, we register the new state 
into the two vectors. Once the vector have all k states, the new state 
triggers a replacement policy, thus we select the image with the 

highest 𝑄𝑡
𝑆𝑖  as the victim to be replaced. To give an enough chance 

for the new image to be profiled, we put the V-value of the new 
state by the median value of 𝑉𝑡, thus the system can quickly react 
the changes of image sets, e.g., due to context changes. 
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Figure 3. Online learning algorithm to identify 

images of interest 

The two reward threshold values, 𝑇𝑎𝑐𝑐 and 𝑇𝑛𝑒𝑤 give the system 
runtime controllability for running applications and workload. For 
example, if processor runs an interactive workload, i.e., when the 
image groups are frequently changed, higher 𝑇𝑎𝑐𝑐 and 𝑇𝑛𝑒𝑤 values 
encourage the number of replacements with new states. If the 
system wants to decrease the cost of profiling, the lower thresholds 
can be chosen to avoid frequent profiled image set changes. 

3.3 Approximate Profiler 
The proposed profiler is running in parallel with main GPU 
computations to keep track of frequent operand patterns for the 
images selected by the learning. It would require a large memory 



space to keep every operand with their counts to determine the 
ranking of the operands. In addition, it would also need high 
computation cost of both performance and energy to search if 
operands are already counted or not. The high cost of runtime 
profiling might be as much as it hides the advantage of using the 
memory-based computation. Thus, the proposed profiler identifies 
frequent operand patterns in an approximated manner to minimize 
the profiling overhead at the expense of the accuracy. We use an 
approximate concurrent state machine [25, 26]. The concurrent 
state machine exploits a bloom filter, which is implemented with k 
hash functions to generate an input signature. A signature is saved 
on an m-bits vector. The system error is defined with the size of 
vector and a degree of memberships which means how many 
operands might have a same signature value. In case of having n 
memberships the false positive error is given by: 

f = (1-e-nk/m)k . 

In our evaluation with three hash functions which generate 60K 
different signatures of 128-bit length, we can profile the frequency 
pattern of operands with 5x lower memory space than the exact 
profiling case. Since we only need to approximately find a list of 
frequent operands rather than their exact ranking, we can still 
identify signatures of frequent operands with an acceptable error-
rate of 5.3%. Thus, we can significantly speed up the profiling with 
a small impact on the result of final processor computations. 

Based on the profiled result, we update the TCAM rows with l-top 
input operands for each FPU operation. Since we fill the rows for 
multiple representative images selected by TD-LRU, every image 
has different probabilities for future occurrences.  We also consider 
this fact by allocating different portions of TCAM rows for each 
image. We utilize the vector 𝑉𝑡 produced by TD-LRU so that more 
frequently observed image groups have higher proportions of the 
rows. For an image state 𝑆𝑖 of N profiled states, the allocated 
proportion 𝑃𝑆𝑖  is computed as follows: 

𝑃𝑆𝑖 =
𝑉𝑡
𝑆𝑖

∑ 𝑉𝑡
𝑆𝑗𝑁

𝑗=1

 . 

For example, the frequently profiled operands of an image state 

with 𝑉𝑡
𝑆𝑎 = 0.4 will take 2x more number of rows than those of 

another image state with 𝑉𝑡
𝑆𝑏 = 0.2. This allocation strategy gives 

hit rate improvement by giving higher proportion in the TCAM 
rows for frequently observed image groups.  

4. EXPRIMENTAL RESUTLS 

4.1 Experimental Setup 
In order to evaluate the proposed ACAM framework, we 
implement our technique based on Multi2Sim cycle-accurate 
processor simulator [30] for the recent AMD Southern Island GPU 
architecture. For example, Radeon HD 7000-series have been 
designed based on this architecture. Note that our proposed design 
can be implemented in most recent GPU architectures. For circuit 
level simulations, we have used HSPICE tool to design the TCAM 
array and the STT-RAM memory. We use NVsim tool [31] to 
estimate the energy consumption of memory accesses. The 6-stage 
balanced FPUs were designed using Synopsys Design Compiler  in 
45-nm ASIC flow. FPUs are optimized for power based on the 
corresponding TCAM delay in each size. To compute the energy 
consumption of the proposed associative memory, we utilized 
detail simulation parameters (e.g., sizing, resistors and capacitors, 
etc.) as reported in [13]. In turn, the total energy of the designed 
streaming processors can be computed using the number of 
computations extracted from the Multi2Sim simulator. We 
maintain 10 image states for online learning and select top five 
images to perform runtime profiling (i.e., M=10 and N=5). We 
empirically set two thresholds by 𝑇𝑎𝑐𝑐 = 0.1 and 𝑇𝑛𝑒𝑤 = 0.3 for 
used input data. In order to further decrease the running overhead 
of the pixel similarity computation, we scaled down images by half 
(i.e., 1/2 of widths and heights) in the learning step. Even with the 
down sampling, we can still obtain enough accurate pixel 
similarities. In order to recognize when a program start executing 
the workload on the stream processor, we modified AMD compute 

abstraction layer (CAL). The AMD CAL provides a runtime device 
driver library that allows a host program to execute kernels, which 
is a program instance of the host program, on stream processors. 
Thus, we can profile and learn the images when the kernels are 
initiated and update the TCAM of all compute units in parallel.  

We use four OpenCL image processing applications of AMD APP 
SDK v2.5 [32], Sobel, Robert, Sharpen and Shift. We used Caltech 
101 computer vision [33] as input image dataset. In the experiment 
we compare our proposed ACAM to an offline profiling strategy. 
The offline profiling strategy utilizes pre-stored data computed for 
fixed image sets which are randomly chosen by 5% of whole 
dataset. In order to evaluate how the proposed technique works for 
different dataset sizes including a large number of images, we test 
our technique on variety of input dataset sizes from 100 to 4000 
images. We also used two types of dataset to verify the advantage 
of our design: (i) locality dataset and (ii) random dataset. For the 
locality dataset, we first made an initial sequence so that similar 
images (e.g., cat and butterfly) appear together, and then swapped 
two images which were randomly selected within a window of 5% 
of the dataset size. We repeated the swap iteration by the number 
of images in the dataset. In contrast, for the random data we chose 
the sequence of images randomly. In order to evaluate the accuracy 
of the results of the image processing applications, we compare 
with the golden picture of the exact computation. 

4.2 Impact on Accuracy and Overhead 
As explained in Section 3.3, we can control the expected amount of 
the false positive error of the profiler by changing the number of 
hash functions (k) and bloom vector size (m). In our configuration, 
the false positive error is 5.3%. In order to understand how the false 
positive error affects the results of actual applications, we evaluate 
PSNR values over different TCAM row sizes. Table 1 shows the 
evaluation results. Since smaller than 30db in PSNR is assumed to 
be not acceptable [34], for the Sobel and shift applications, we 
assumed that the number of TCAM rows should be limited to 64-
row. For example, Figure 4 shows the visual results of Robert 
application using the original computation (i.e., the golden image 
case) and approximate computation, resulting in no perceivable 
change. 

Table 1. PSNR comparison for different applications 

and TCAM sizes 

PSNR 
Number of rows 

4-row 8-row 16-row 32-row 64-row 128-row 

Robert  62 60 58 52 47 41 

Sobel  59 49 46 41 39 28 

Sharpen  64 62 58 55 51 46 

Shift  47 41 38 35 31 26 

   

           Original Image                    Exact computing           Approximate computing 

      PSNR=41dB 

Figure 4. Output quality comparison in Robert application 

The proposed design does not sacrifice the performance compared 
to the original GPU execution. The additional procedures for 
profiling and online learning are executed with the GPU 
computations in parallel, and the proposed associative memory is 
designed such that the memory-based computation can perform 
with the same clock frequency of the FPUs. In addition, the area 
overhead is negligible, since the number of TCAM rows is very 
small, i.e., less than 64. However, the proposed ACAM may add 
energy overhead due to learning, profiling and additional 
associative memories. Thus, we thoroughly evaluate the energy 
overhead in the following section. 



4.3  Hit Rate and Energy Saving Comparison 

Figure 5 compares the hit rate of ACAM using the offline and 
runtime profiling over different TCAM sizes. In the experiment we 
use the locality dataset containing 1000 images. As shown in the 
result, the proposed method always outperforms the offline 
profiling in terms of the hit rate, showing that the GPU can get 
higher chance to apply the clock gating. This result presents that 
the ACAM can adaptively fill the TCAM with better input patterns 
by considering all the data set given to the system so far. In 
addition, with the larger TCAM size, the hit rate difference also 
becomes higher. It is because the larger TCAM spaces allows to 
keep more enough operands, which are used again, from the 
selected images.  

To evaluate how the hit rate affects the energy consumption, we 
compare the energy saving of two profiling strategies to the exact 
computation case, called Exact-FPU. Figure 6 shows the 
normalized energy consumption of the GPGPU to that of Exact-
FPU over different associative memory sizes. The results show that 
the proposed ACAM improves the GPGPU energy saving by 
34.7% on average. In addition, we observed that the level of hit rate 
significantly influences the GPU energy saving. For example, since 
a small size TCAM (e.g., 2 rows) would not provide a high hit rate, 
the approximation does not change the energy consumption 
dramatically. However, because of higher hit rate for the larger 
sizes, the proposed ACAM always outperforms the offline profiling 
strategy in terms of energy consumption. The ACAM saves 2.9x 
more energy on average than the offline profiling strategy. 

 In order to better understand how the ACAM consumes energy, we 
breakdown the energy consumption into two energy parts, energy 
computation in FPUs with associative memories (i.e., red-color 
bar) and energy overhead of online learning and profiling 
considering memory accesses (i.e., black-color bar). For both 
offline and runtime profiling, the minimum energy point is 
observed in the middle of TCAM sizes. The offline profiling 
strategy shows the minimal energy point for around 8-row case, 
while the proposed ACAM for around 16-row case. It is because 
there is an energy trade-off between the FPU and the associative 
memory. In the ACAM case, the learning and profiling energy is 
always consumed at a same level since the dataset is fixed. 
Although a larger TCAM size provides higher hit rate, it also 
requires a larger amount of energy cost. However, because of the 
higher hit rate, the FPU can be in the clock gating mode in a longer 
time, resulting in overall energy saving. For example, using the 
TCAM size of 64-row does not improve the FPU hit rate as much 

as it could compensate the TCAM energy cost. Thus, in our case, 
16-row is the best setting to achieve the highest energy saving in 
general. Moreover, the minimum energy point of the offline 
profiling is shifted to a larger TCAM size in the online profiling, 
i.e., from 8-row to 16-row. The online profiling achieves higher hit 
rate improvement in the larger TCAM size, thus showing that the 
online profiling is an important design strategy to achieve higher 
energy efficiency. 

4.4 Comparison for Different Datasets 
Figure 7 shows the impact of increasing the dataset size from 100 
to 4000, on GPGPU energy efficiency and ACAM hit rate 
improvement for the offline profiling and the online ACAM. For a 
fair comparison for the energy saving, we use 8-row TCAM for the 
offline profiling, while 16-row TCAM for the ACAM case. Figure 
7 shows that the proposed runtime profiling shows higher-energy 
saving on the large-size input dataset, which is more general for the 
recent IoT workload. For example, for the largest dataset, i.e., 4000 
images, the online ACAM method can adaptively update pre-stored 
the TCAM values in time by considering the data locality. Thus, 
we observed that the ACAM presents 3.3x more energy saving 
improvement, on average for four applications, than the offline 
case. In addition, we observed that the energy overhead for 
profiling becomes lower for larger dataset sizes. Since the ACAM 
profiles workload when selected representative image states are 
changed, we need relatively frequent profiling until the selected 
images are good-enough to represent the dataset. Then, once the 
online learning has sufficient chances to cover the dataset, the 
number of profiling starts being saturated. Thus, we conclude that 
the proposed ACAM technique performs better with practical 
applications which have to handle the substantial amount of 
workloads. 

However, the naïve sampling method of the offline profiling cannot 
identify the proper images to be profiled, resulting in low hit rate. 
Therefore, the low hit rate degrades the GPGPU energy efficiency, 
compared to the ACAM case. In contrast, for a small size dataset, 
e.g., 100, the hit rate difference between the two strategies are 
small. Thus, the offline technique has better energy efficiency due 
to its zero profiling energy. However, we observed that the energy 
saving of the offline method decreases as the dataset size increases, 
even though the offline method can profile more images by 
profiling 5% of dataset to get enough knowledge. Since the TCAM 
size must be limited in the design time (e.g., 64-row in this case), 
the offline profiling cannot put enough high-frequent patterns, 
preventing from the TCAM hit rate improvement. In contrast, our 
online profiling method can adaptive update the TCAM based on 
the temporal locality, resulting in high hit rate and energy saving. 
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Figure 5. Hit rate comparison for offline profiling and online 

ACAM 
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Figure 6. GPGPU energy saving over different ACAM sizes 
for offline strategy and online ACAM  



In order to understand how the ACAM works with different levels 
of data locality, we also evaluate the ACAM framework with the 
random dataset, which has no data locality. In general, multimedia 
applications have high temporal locality, but few applications may 
handle datasets with low data locality. In this experiment, we define

Random LocalityE E E   as a GPGPU energy difference metric for 

the random and locality dataset cases, where each energy 
consumption is normalized to the Exact-FPU case. Table 2 lists E  
for all applications in different dataset sizes. Intuitively, the ACAM 
always performs better with the locality dataset since the proposed 
TD-LRU is optimized to find the locality of the data. We also 
observed that the energy difference grows as the data size increases, 
since the online learning algorithm can make better decisions for 
image selections based on the locality. Therefore, in this case, the 
best energy saving occurs in the largest dataset where learning 
algorithm has better chance to find the relevant image for profiling. 
However, we also observed that, even with the random dataset, the 
ACAM saves the energy of GPGPU and outperforms the offline 
profiling strategy. It is because our learning algorithm can also 
identify distinct images in different image states, thus selecting 
operands which covers more representative images in the whole 
dataset.  

Table 2. Normalized GPGPU energy saving difference ( E ) 

using locality and random dataset 

 
Dataset size 

100 500 1000 2000 3000 4000 

Robert 0.04 0.04 0.07 0.09 0.11 0.13 

Sobel 0.02 0.06 0.13 0.15 0.16 0.18 

Sharpen 0.05 0.08 0.14 0.17 0.19 0.21 

Shift 0.04 0.05 0.09 0.11 0.12 0.14 

5. CONCLUSION 
In this paper we propose an approximate computing framework 
using an adaptive associative memory (ACAM) with the capability 
of the runtime profiling based on online learning. To support 
runtime updates for the associative memory, the proposed 
technique exploits MTJ-based TCAM memory which solves the 
low endurance problem of the resistive TCAM. In the proposed 
technique, the machine learning algorithm is also used to find the 
best images of interest based on the proposed TD-LRU algorithm. 
The approximate concurrent state machine is also implemented for 
profiling selected input images, decreasing the number of profiling 
overhead by ~5X with a low error-rate of 5.3%. Our experimental 
results on AMD southern Island GPU show that the proposed 
design achieves on average 34.7% energy saving which is 2.1X 

more than the offline profiling case, while providing acceptable 
quality of service. 
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Figure 7. Normalized energy consumption of GPGPU system 

using different dataset size 


