
ACAM: Approximate Computing Based on Adaptive
Associative Memory with Online Learning

Mohsen Imani†, Yeseong Kim†, Abbas Rahimi‡, Tajana Rosing†

†Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA
‡Electrical Engineering and Computer Science, UC Berkeley, Berkeley, CA 94720, USA

{moimani, yek048, tajana}@ucsd.edu, abbas@eecs.berkeley.edu

ABSTRACT
The Internet of Things (IoT) dramatically increases the amount of
data to be processed for many applications including multimedia.
Unlike traditional computing environment, the workload of IoT
significantly varies overtime. Thus, an efficient runtime profiling is
required to extract highly frequent computations and pre-store them
for memory-based computing. In this paper, we propose an
approximate computing technique using a low-cost adaptive
associative memory, named ACAM, which utilizes runtime
learning and profiling. To recognize the temporal locality of data in
real-world applications, our design exploits a reinforcement
learning algorithm with a least recently use (LRU) strategy to select
images to be profiled; the profiler is implemented using an
approximate concurrent state machine. The profiling results are
then stored into ACAM for computation reuse. Since the selected
images represent the observed input dataset, we can avoid
redundant computations thanks to high hit rates displayed in the
associative memory. We evaluate ACAM on the recent AMD
Southern Island GPU architecture, and the experimental results
shows that the proposed design achieves by 34.7% energy saving
for image processing applications with an acceptable quality of
service (i.e., PSNR>30dB).

Keywords
Approximate computing, Associative memory, Online learning,
Non-volatile memory

1. INTRODUCTION
Going toward the Internet of Things (IoT) and the big data
computation significantly increases the size of input data on the
recent processors. In this era, many IoT workloads are going to be
run on the GPUs in either mobiles or the clouds such as data
centers. In particular, multimedia processing as an instance of IoT
workload have rapidly proliferated, and to achieve timely
performance demand, they require to be accelerated using efficient
massive parallel processors [1, 2]. In addition, due to locality of
dataset, similar computations repeatedly happen, thus giving an
opportunity to significantly reduce the amount of computations
based on memory-based computations [3]. To this end, an
associative memory in the form of a lookup table has been exploited
to reduce the number of redundant computations. A software
implementation pre-stores frequent patterns on a hash table and
retrieves them using a set of keys that replace original
computations. In order to enhance the performance of the lookup
table, associative memories can be implemented in hardware using
ternary content addressable memory (TCAM).

However, to utilize TCAMs in computation-with-memory [4], there
are two technical challenges. First, the system design has to

consider the actual workloads which keep changing rapidly over
different contexts such as time, place, and applications. Market
research shows significant growth on interactions with external
environment using sensor employments. Therefore, it is obvious
that filling associative memories with offline data, on design time,
cannot provide desirable hit rates [5]. Since with today’s interactive
IoT workloads, we need to have a context-aware associative
memory which should adapt to the environment. Therefore,
runtime profiling is one the essential components of the associative
memories for their practical deployment on parallel processors.
Second, CMOS-based TCAMs consume very high energy for the
search operation. This limits the applicability of these memories to
classification and IP routing [6]. Non-volatile memories (NVMs)
open a new field to have an efficient memory-based computation
[7]. Resistive random access memory (ReRAM) and spin-transfer
torque RAM (STT-RAM) are two kinds of low leakage and dense
NVMs which are based on memristive and magnetic tunneling
junction (MTJ) devices respectively. Moreover, NVM-based
TCAMs can further reduce energy consumption by applying
voltage over scaling (VOS) [8] or reducing the search switching
activity [9].

In this paper, we propose a novel approximate computing
framework using an adaptive associative memory, called ACAM,
with a capability of learning-based runtime profiling. The proposed
design also addresses the endurance and cost issues of associative
memories for online learning, thus providing a robust and practical
solution for a wide range of dynamic workloads on parallel
processor architectures. Our design goal is to find the best input
data with higher hit rate to adaptively fill the rows of an associative
memory and improve overall energy. The learning-based profiling
runs in the following steps: (i) Machine learning algorithm finds
the image of interest from input dataset based on pixel similarities.
The algorithm identifies the most represented data, which is likely
to be used in the near future, for profiling based on the proposed
TD-LRU policy. (ii) We profile the selected images of interest
based on a low-cost approximate concurrent state machine to keep
track of the number of repeated computations. The approximate
profiling is implemented using hash functions and a bloom filter,
thus enhancing energy efficiency at the expense of minimal
acceptable errors. In the circuit-level design, to address the
endurance and the lifetime issues caused by frequent runtime
updates, ACAM exploits high endurance and robust MTJ-based
TCAM and memory block. In addition, we apply approximation for
a selected part of associative memory to balance the tradeoff
between energy and accuracy. Thanks to the proposed method with
an efficient runtime profiling, parallel processors can efficiently
process a large and active dataset with a support of the adaptive
associative memory. Our evaluation shows that the proposed
ACAM improves the energy efficiency of GPGPU by 34.7% with
acceptable PSNR (peak signal-to-noise ratio) of more than 30dB
for image processing applications.

2. RELATED WORK
Non-volatile memories such as ReRAM and STT-RAM are good
candidate to design an efficient and low leakage power associative
memories [7] [10] [11]. Earlier efforts have used these ReRAM and
STT-RAM technologies to design a stable and efficient TCAM.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ISLPED '16, August 08-10, 2016, San Francisco Airport, CA, USA

© 2016 ACM. ISBN 978-1-4503-4185-1/16/08…$15.00

DOI: http://dx.doi.org/10.1145/2934583.2934595

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2934583.2934595

However the endurance of ReRAMs limits to 106-107 write
operations while the endurance of STT-RAMs is very high (>1015)
[12]. Thus, efficient MTJ-based TCAM cell was proposed to
address the ReRAM endurance problem [13].

With the development of the efficient TCAM designs, the
associative memory exploits the high number of pattern similarities
to decrease the amount of computations [5, 14-17]. In such
computation-with-memory techniques, the associative memory
consists of two main blocks: a TCAM for an input lookup table and
a memory for output data. Since a streaming core processes the
workload while executing an instruction with operands (e.g., $r1
and $r2 for “add $r1, $r2” instruction,) the TCAM pre-stores some
operands for frequent input patterns while the corresponding
outputs is stored in the memory. In the actual computation, input
operands of an executed instruction is compared to all TCAM rows
in parallel, and in a case of a hit (if any), the system stops the
processor computation by using the clock-gating technique. Then,
a signal on the matched line activates the corresponding line of the
memory to retrieve the output of the computation. Low energy
consumption of the NVM-based associative memory motivates
many use cases of the memory-based computation, including query
processing [18], search engine, text processing [19], image
processing [20], pattern recognition and data mining [21].

Recent work mainly target to use the memory-based computation
to improve the computation efficiency. In GPUs, Zhang, et al. [22]
leverage VOS for “imprecise” Floating Point Units (FPUs).
However, imprecise blocks such as the SRAM-based look-up
tables suffer from high error rate when applying VOS [22]. Rahimi,
et al. in [17] used a memristor-based look-up table to increase the
computational reuse in GPGPUs. Imani et al. proposed a
configurable approximate associative memory architecture to
reduce the TCAM energy consumption by applying selective VOS
[8]. Multi-access single charge TCAM has been proposed to reduce
the search energy consumption by reducing the number of updates
on the CAM [23, 24]. Multi-stage search associative memory is
another design which exploits selective row activation and in-
advance precharging to respectively improve energy consumption
and mitigating the overhead of sequential access. These previous
NVM-based associative memories initialize the TCAM block with
the offline profiling data without the update capability because of
limited endurance of resistive associative memories. However,
since running dataset can be significantly changed over different
contexts in reality, the design-time offline profiling, which sticks to
a limited sample size, is not suitable to choose represented dataset.
It limits the applicability of the use of the associative memory on
the parallel processors.

In this paper, we proposed an associative memory with online
learning to address the main limitation in enabling approximate
computation on the real GPU architectures. In the proposed design,
learning algorithm finds the best input dataset of interest for
profiling; then, an approximate concurrent state machine profiles
selected inputs at runtime. Our evaluation shows that the proposed
design achieves significantly high energy efficiency based on the
online learning especially for running applications with large
dataset.

3. DESIGN OF PROPOSED ACAM
In this section, we describe our proposed approximate computing
framework, ACAM, in detail. In order to fill the TCAM with highly
reusable data, the proposed technique selects representative inputs
as profiling candidates using an online learning at runtime. This
strategy enables two main advantages. First, filling the TCAM
adaptively with the consideration of data locality increases the
TCAM hit rate. Thus, by increasing the average time that the FPU
is in the clock gating mode, it improves system energy efficiency
as well. Second, the runtime profiling allows us the memory-based
computation on the real systems. For example, the runtime
profiling selects representative dataset while handling not only
multiple applications and but also newly installed applications
which cannot be considered in the design time. In addition, we can
change the TCAM pre-stored data based on the contexts.

Figure 1 illustrates the architectural overview of the proposed
ACAM. The execution flow of the system has three main steps.
First, we use an efficient online learning algorithm to find proper
dataset for profiling by intelligently identifying input image
patterns. After that, the approximation profiler, which uses the
concurrent state machine [25, 26], profiles operands for
instructions, and identify frequent patterns approximately. Based
on the profiled result, we fill the proposed associative memories
with frequently observed operands which will be likely to appear
in future computations. Then, the GPU device can process executed
instructions using the pre-stored data. We next describe the key
component of our approximate computing design, GPU processing
with the proposed adaptive associative memory.

SQRT: {a1} à {q1}

MUL: {c1, d1} à {q1}

ADD: {a1, b1} à {q1}

MAC: {a1, b1, c1} à {q1}

Image 0

Image 1

Image 2

SQRT FPUAM

AM

AM

AM

MUL FPU

ADD FPU

MAD FPU

GPU Device

Image 3

(V-value)

Representative Images

High frequent patterns

(HFP)

Select weighted

patterns

Profiling

Dataset AM

Updater

Approximate

Concurrent

State Machine

Online

Learning

Learning

Processing

Figure 1. An architectural overview of the proposed ACAM

3.1 Associative Memory Design for GPU
In the proposed GPGPU architecture, we consider four key
instructions: adder (ADD), multiplier (MUL), square root (SQRT)
and multiply accumulator (MAC). Each instruction is computed on
four FPUs (floating-point units) of each streaming core. Beside
each stream core we deploy four associative memories
corresponding to each computation. Two 32-bit input operands are
given for ADD and MUL, one 32-bit operand for SQRT and three
32-bit operands for MAC. Each associative memory keeps profiled
operand signatures in each row. Since the profiler is designed to
give the signatures for frequent operands, the GPU processing can
have higher chances to reuse the pre-stored output in the associative
memory.

Sense Amplifiers

Bit LinesBuffer

S
en

se
 A

m
p

li
fi

er
s

MLs

E
n

L
s

SLp SL

PL1

PL2

M1 M2

M4M3

M5

SLp SL

M1 M2

M4M3

M5 Clk

Clk

Clk

Sense circuitry

EnLML

A

Hash Functions

Input Operand

Signature

Rsense

B
it-lin

e

VDD

STT-RAM

T
C

A
M

Figure 2. Associative memory structure of ACAM

Figure 2 shows the associative memory structure of the proposed
associative memory. This memory consists of three blocks: hash
functions, a TCAM and a STT-RAM. First, once an instruction is
executed with operands on each FPU, the hash functions produce
signatures of the operands, and the signature is searched through all
TCAM rows. Using the TCAM technology, this search operation
can be carried out in a single cycle. The hit in any TCAM rows
stops the processor computation by activating the clock gating
mode. Finally, TCAM hit activated the corresponding line of the
STT-RAM memory to read the precomputed output data.

In this memory design, there is a key technical challenge which can
be caused from working with the runtime updating. Most of the
high speed and stable TCAMs are designed with resistive memory.
The lifetime of these memories limit to 106-107 number of writes.
The limited endurance avoids using TCAMs with high number of
TCAM updates. In order to design an efficient associative memory
for frequent run-time updating, we exploit the MTJ-based TCAM
which is characterized by high endurance. Most of MTJ-based
TCAMs [27] (e.g. 6T-2MTJ) have low sense margin and a long
search delay (~2.1ns). Thus, to provide better performance for
search operations, we use the 5T-4MTJ TCAM structure [16]
which also has the capability of complementary search operations.
5T-4MTJ improves the sense margin of the cell to 240mV and
increases the large ML (match line) swing which results in a sub-
1.3ns search operation. In addition, the 5T-4MTJ provides high
energy efficiency by doing a search operation with
0.68fJ/search/bit, which is suitable for the adaptive updates. As
shown in Figure 2, the data is saved on the TCAM complementary
using the values of MTJ1 and MTJ2. In the search operation, the
drivers pre-charge the MLs. In turn, SL and SL-bar signals activate
the access transistors. At the same time, the PL drives put the input
search signal on PL1 and PL2 lines. In case of a mismatch on an
input signature, the middle node of the cell (node A) turns to zero,
and the leakage current through M5 discharges the ML.

The outputs of profiled operand signatures are stored in the STT-
RAM as shown in the right side of Figure 2. The STT-RAM
memory consists of a transistor and an MTJ device. To write in
STT-RAM, EnL lines are selecting target cells and a write voltage
is applied on the bitline. In the read mode, the EnL value is
activated by the TCAM block to read a corresponding line of the
STT-RAM. The sense amplifier of the STT-RAM is resistive-based
and works with a sense resistor (RSense).

In most cases, a large size of TCAMs in a view of the word-size
and the number of rows can provide higher hit rate. However, for
the large size of TCAMs, high search energy consumption degrades
total processing energy efficiency, and the long word size exhibits
low cell stability due to the cell leakage. Moreover, the TCAM with
many rows results in high energy consumption and slow
performance for search operations due to the slow input buffer.
Thus, it is required to fill the TCAM rows with reusable data, i.e.,
that have high probability for hit rate, while compensating the
search energy of the associative memory. Next, we describe our
learning and profiling methodology how to fill the TCAM rows
with highly reusable data.

3.2 Online Learning-based Image Selection
In order to efficiently utilize the memory-based computation on the
proposed GPU, the AM must keep the best precomputed data which
will appear in the future. However, the design-time decision for
pre-stored data cannot adapt workload changes. Moreover, even
though we have whole large input dataset in the design time, due to
the variety of applications and users, it is impossible to maintain all
useful data in the limited memory area. Therefore, we utilize a
runtime profiling methodology. The main challenge here is how to
select the representative input dataset which are good to be profiled
for future computations. We design our selection strategy based on
the temporal locality of dataset. In reality, input multimedia images
usually exhibit two important characteristics: (i) a similar image
group is processed repeatedly and (ii) the groups can be changed
over time mainly due to the context changes such as time of day
and place [28]. For example, if the user takes pictures outside at
night, the pictures would be characterized as a group whose
background is mostly dark. In this case, since the computations on
stream cores would be also similar, they are good candidates to be
reused the computed data. As time goes by, the set of groups is
likely to be changed due to the change of contexts, thus affecting
the set of representative images. Our image selection policy, called
TD-LRU, is designed to address these two characteristics as shown
in Figure 3.

The first step is to characterize images groups while defining their
future usability. We exploit temporal difference (TD) learning [29],

which is an algorithm of the reinforcement learning class. The TD-
LRU maintains 𝑘 states which represent 𝑘 image groups of interest.
When an input image is given for every iteration, each state gets a
reward value based on its pixel similarity to the input image. For
example, more similar image groups gets higher reward values.
More formally, for M states, 𝑆1, 𝑆2, … 𝑆𝑀, the algorithm manages a

vector, 𝑉𝑡 =< 𝑉𝑡
𝑆1 , 𝑉𝑡

𝑆2 , … , 𝑉𝑡
𝑆𝑀 > where each vector element has

an accumulated reward value of each tracked state for each iteration

t. Once an input image is given at t-th iteration, each element 𝑉𝑡
𝑆𝑖 is

updated as follows.

𝑉𝑡
𝑆𝑖 = 𝑅𝑡

𝑆𝑖 + 𝛾 ∙ 𝑉𝑡−1
𝑆𝑖

In this equation, 𝑅𝑡
𝑆𝑖 is the reword value for the pixel similarity

between the input image and the tracked image of the state 𝑆𝑖
(where 0 ≤ 𝑅𝑡

𝑆𝑖 ≤ 1), and the parameter 𝛾 balances the impact of
the obtained reward on the previous V-values. A large γ updates the
V-values with more consideration of the accumulated rewards of
previous stages, while a small γ prioritizes the effect of the current
reward in each state. In this paper we set the value of γ by 0.95.
Thus, once an input is given, each state is updated by their pixel
similarities while giving higher priority for the previous rewards.
Therefore, frequently observed image groups will have higher
values in the vector over time, and they are considered as the good
candidates to be profiled. We select top N images in the vector as
the images of interest (where 𝑁 ≤ 𝑀).

In order to consider the second characteristic, i.e., the temporal
locality of image groups, we maintain another vector, 𝑄𝑡 =<
𝑄𝑡
𝑆1 , 𝑄𝑡

𝑆2 , … , 𝑄𝑡
𝑆𝑀 >, which tracks the temporal access pattern of the

image groups based on a LRU (Least Recently Used) policy. TD-
LRU considers the images with less than a threshold reward, 𝑇𝑎𝑐𝑐,

as non-matched states. According to this criteria, 𝑄𝑡
𝑆𝑖 increases by

1 if non-matched, otherwise it is reset to 0. Thus, the image groups
which have not been accessed for a long time will have a large value
in the vector. In each iteration, if the rewards with all current states
are less than a threshold, 𝑇𝑛𝑒𝑤, we consider this input as a new
learning state. Until the k states are all set, we register the new state
into the two vectors. Once the vector have all k states, the new state
triggers a replacement policy, thus we select the image with the

highest 𝑄𝑡
𝑆𝑖 as the victim to be replaced. To give an enough chance

for the new image to be profiled, we put the V-value of the new
state by the median value of 𝑉𝑡, thus the system can quickly react
the changes of image sets, e.g., due to context changes.

Next Input

Top N states

changed?

Pixel similarity with

states (S1, S2, …, SM)

YES

Update Vt

R

Profiler

Concurrent State

Machine

Update state ranks

based on LRU

Update Qt

U
p

d
a

te sta
te list

11 1
1

22 2
1

1

...... ...

MM M

SS S
tt t

SS S
tt t

SS S
t t t

VV R

VV R

VV R

Learning

Figure 3. Online learning algorithm to identify

images of interest

The two reward threshold values, 𝑇𝑎𝑐𝑐 and 𝑇𝑛𝑒𝑤 give the system
runtime controllability for running applications and workload. For
example, if processor runs an interactive workload, i.e., when the
image groups are frequently changed, higher 𝑇𝑎𝑐𝑐 and 𝑇𝑛𝑒𝑤 values
encourage the number of replacements with new states. If the
system wants to decrease the cost of profiling, the lower thresholds
can be chosen to avoid frequent profiled image set changes.

3.3 Approximate Profiler
The proposed profiler is running in parallel with main GPU
computations to keep track of frequent operand patterns for the
images selected by the learning. It would require a large memory

space to keep every operand with their counts to determine the
ranking of the operands. In addition, it would also need high
computation cost of both performance and energy to search if
operands are already counted or not. The high cost of runtime
profiling might be as much as it hides the advantage of using the
memory-based computation. Thus, the proposed profiler identifies
frequent operand patterns in an approximated manner to minimize
the profiling overhead at the expense of the accuracy. We use an
approximate concurrent state machine [25, 26]. The concurrent
state machine exploits a bloom filter, which is implemented with k
hash functions to generate an input signature. A signature is saved
on an m-bits vector. The system error is defined with the size of
vector and a degree of memberships which means how many
operands might have a same signature value. In case of having n
memberships the false positive error is given by:

f = (1-e-nk/m)k .

In our evaluation with three hash functions which generate 60K
different signatures of 128-bit length, we can profile the frequency
pattern of operands with 5x lower memory space than the exact
profiling case. Since we only need to approximately find a list of
frequent operands rather than their exact ranking, we can still
identify signatures of frequent operands with an acceptable error-
rate of 5.3%. Thus, we can significantly speed up the profiling with
a small impact on the result of final processor computations.

Based on the profiled result, we update the TCAM rows with l-top
input operands for each FPU operation. Since we fill the rows for
multiple representative images selected by TD-LRU, every image
has different probabilities for future occurrences. We also consider
this fact by allocating different portions of TCAM rows for each
image. We utilize the vector 𝑉𝑡 produced by TD-LRU so that more
frequently observed image groups have higher proportions of the
rows. For an image state 𝑆𝑖 of N profiled states, the allocated
proportion 𝑃𝑆𝑖 is computed as follows:

𝑃𝑆𝑖 =
𝑉𝑡
𝑆𝑖

∑ 𝑉𝑡
𝑆𝑗𝑁

𝑗=1

 .

For example, the frequently profiled operands of an image state

with 𝑉𝑡
𝑆𝑎 = 0.4 will take 2x more number of rows than those of

another image state with 𝑉𝑡
𝑆𝑏 = 0.2. This allocation strategy gives

hit rate improvement by giving higher proportion in the TCAM
rows for frequently observed image groups.

4. EXPRIMENTAL RESUTLS

4.1 Experimental Setup
In order to evaluate the proposed ACAM framework, we
implement our technique based on Multi2Sim cycle-accurate
processor simulator [30] for the recent AMD Southern Island GPU
architecture. For example, Radeon HD 7000-series have been
designed based on this architecture. Note that our proposed design
can be implemented in most recent GPU architectures. For circuit
level simulations, we have used HSPICE tool to design the TCAM
array and the STT-RAM memory. We use NVsim tool [31] to
estimate the energy consumption of memory accesses. The 6-stage
balanced FPUs were designed using Synopsys Design Compiler in
45-nm ASIC flow. FPUs are optimized for power based on the
corresponding TCAM delay in each size. To compute the energy
consumption of the proposed associative memory, we utilized
detail simulation parameters (e.g., sizing, resistors and capacitors,
etc.) as reported in [13]. In turn, the total energy of the designed
streaming processors can be computed using the number of
computations extracted from the Multi2Sim simulator. We
maintain 10 image states for online learning and select top five
images to perform runtime profiling (i.e., M=10 and N=5). We
empirically set two thresholds by 𝑇𝑎𝑐𝑐 = 0.1 and 𝑇𝑛𝑒𝑤 = 0.3 for
used input data. In order to further decrease the running overhead
of the pixel similarity computation, we scaled down images by half
(i.e., 1/2 of widths and heights) in the learning step. Even with the
down sampling, we can still obtain enough accurate pixel
similarities. In order to recognize when a program start executing
the workload on the stream processor, we modified AMD compute

abstraction layer (CAL). The AMD CAL provides a runtime device
driver library that allows a host program to execute kernels, which
is a program instance of the host program, on stream processors.
Thus, we can profile and learn the images when the kernels are
initiated and update the TCAM of all compute units in parallel.

We use four OpenCL image processing applications of AMD APP
SDK v2.5 [32], Sobel, Robert, Sharpen and Shift. We used Caltech
101 computer vision [33] as input image dataset. In the experiment
we compare our proposed ACAM to an offline profiling strategy.
The offline profiling strategy utilizes pre-stored data computed for
fixed image sets which are randomly chosen by 5% of whole
dataset. In order to evaluate how the proposed technique works for
different dataset sizes including a large number of images, we test
our technique on variety of input dataset sizes from 100 to 4000
images. We also used two types of dataset to verify the advantage
of our design: (i) locality dataset and (ii) random dataset. For the
locality dataset, we first made an initial sequence so that similar
images (e.g., cat and butterfly) appear together, and then swapped
two images which were randomly selected within a window of 5%
of the dataset size. We repeated the swap iteration by the number
of images in the dataset. In contrast, for the random data we chose
the sequence of images randomly. In order to evaluate the accuracy
of the results of the image processing applications, we compare
with the golden picture of the exact computation.

4.2 Impact on Accuracy and Overhead
As explained in Section 3.3, we can control the expected amount of
the false positive error of the profiler by changing the number of
hash functions (k) and bloom vector size (m). In our configuration,
the false positive error is 5.3%. In order to understand how the false
positive error affects the results of actual applications, we evaluate
PSNR values over different TCAM row sizes. Table 1 shows the
evaluation results. Since smaller than 30db in PSNR is assumed to
be not acceptable [34], for the Sobel and shift applications, we
assumed that the number of TCAM rows should be limited to 64-
row. For example, Figure 4 shows the visual results of Robert
application using the original computation (i.e., the golden image
case) and approximate computation, resulting in no perceivable
change.

Table 1. PSNR comparison for different applications

and TCAM sizes

PSNR
Number of rows

4-row 8-row 16-row 32-row 64-row 128-row

Robert 62 60 58 52 47 41

Sobel 59 49 46 41 39 28

Sharpen 64 62 58 55 51 46

Shift 47 41 38 35 31 26

 Original Image Exact computing Approximate computing

 PSNR=41dB

Figure 4. Output quality comparison in Robert application

The proposed design does not sacrifice the performance compared
to the original GPU execution. The additional procedures for
profiling and online learning are executed with the GPU
computations in parallel, and the proposed associative memory is
designed such that the memory-based computation can perform
with the same clock frequency of the FPUs. In addition, the area
overhead is negligible, since the number of TCAM rows is very
small, i.e., less than 64. However, the proposed ACAM may add
energy overhead due to learning, profiling and additional
associative memories. Thus, we thoroughly evaluate the energy
overhead in the following section.

4.3 Hit Rate and Energy Saving Comparison

Figure 5 compares the hit rate of ACAM using the offline and
runtime profiling over different TCAM sizes. In the experiment we
use the locality dataset containing 1000 images. As shown in the
result, the proposed method always outperforms the offline
profiling in terms of the hit rate, showing that the GPU can get
higher chance to apply the clock gating. This result presents that
the ACAM can adaptively fill the TCAM with better input patterns
by considering all the data set given to the system so far. In
addition, with the larger TCAM size, the hit rate difference also
becomes higher. It is because the larger TCAM spaces allows to
keep more enough operands, which are used again, from the
selected images.

To evaluate how the hit rate affects the energy consumption, we
compare the energy saving of two profiling strategies to the exact
computation case, called Exact-FPU. Figure 6 shows the
normalized energy consumption of the GPGPU to that of Exact-
FPU over different associative memory sizes. The results show that
the proposed ACAM improves the GPGPU energy saving by
34.7% on average. In addition, we observed that the level of hit rate
significantly influences the GPU energy saving. For example, since
a small size TCAM (e.g., 2 rows) would not provide a high hit rate,
the approximation does not change the energy consumption
dramatically. However, because of higher hit rate for the larger
sizes, the proposed ACAM always outperforms the offline profiling
strategy in terms of energy consumption. The ACAM saves 2.9x
more energy on average than the offline profiling strategy.

 In order to better understand how the ACAM consumes energy, we
breakdown the energy consumption into two energy parts, energy
computation in FPUs with associative memories (i.e., red-color
bar) and energy overhead of online learning and profiling
considering memory accesses (i.e., black-color bar). For both
offline and runtime profiling, the minimum energy point is
observed in the middle of TCAM sizes. The offline profiling
strategy shows the minimal energy point for around 8-row case,
while the proposed ACAM for around 16-row case. It is because
there is an energy trade-off between the FPU and the associative
memory. In the ACAM case, the learning and profiling energy is
always consumed at a same level since the dataset is fixed.
Although a larger TCAM size provides higher hit rate, it also
requires a larger amount of energy cost. However, because of the
higher hit rate, the FPU can be in the clock gating mode in a longer
time, resulting in overall energy saving. For example, using the
TCAM size of 64-row does not improve the FPU hit rate as much

as it could compensate the TCAM energy cost. Thus, in our case,
16-row is the best setting to achieve the highest energy saving in
general. Moreover, the minimum energy point of the offline
profiling is shifted to a larger TCAM size in the online profiling,
i.e., from 8-row to 16-row. The online profiling achieves higher hit
rate improvement in the larger TCAM size, thus showing that the
online profiling is an important design strategy to achieve higher
energy efficiency.

4.4 Comparison for Different Datasets
Figure 7 shows the impact of increasing the dataset size from 100
to 4000, on GPGPU energy efficiency and ACAM hit rate
improvement for the offline profiling and the online ACAM. For a
fair comparison for the energy saving, we use 8-row TCAM for the
offline profiling, while 16-row TCAM for the ACAM case. Figure
7 shows that the proposed runtime profiling shows higher-energy
saving on the large-size input dataset, which is more general for the
recent IoT workload. For example, for the largest dataset, i.e., 4000
images, the online ACAM method can adaptively update pre-stored
the TCAM values in time by considering the data locality. Thus,
we observed that the ACAM presents 3.3x more energy saving
improvement, on average for four applications, than the offline
case. In addition, we observed that the energy overhead for
profiling becomes lower for larger dataset sizes. Since the ACAM
profiles workload when selected representative image states are
changed, we need relatively frequent profiling until the selected
images are good-enough to represent the dataset. Then, once the
online learning has sufficient chances to cover the dataset, the
number of profiling starts being saturated. Thus, we conclude that
the proposed ACAM technique performs better with practical
applications which have to handle the substantial amount of
workloads.

However, the naïve sampling method of the offline profiling cannot
identify the proper images to be profiled, resulting in low hit rate.
Therefore, the low hit rate degrades the GPGPU energy efficiency,
compared to the ACAM case. In contrast, for a small size dataset,
e.g., 100, the hit rate difference between the two strategies are
small. Thus, the offline technique has better energy efficiency due
to its zero profiling energy. However, we observed that the energy
saving of the offline method decreases as the dataset size increases,
even though the offline method can profile more images by
profiling 5% of dataset to get enough knowledge. Since the TCAM
size must be limited in the design time (e.g., 64-row in this case),
the offline profiling cannot put enough high-frequent patterns,
preventing from the TCAM hit rate improvement. In contrast, our
online profiling method can adaptive update the TCAM based on
the temporal locality, resulting in high hit rate and energy saving.

 (a) Robert (b) Sobel

 (a) Sharpen (b) Shift

Figure 5. Hit rate comparison for offline profiling and online

ACAM

 (a) Robert (b) Sobel

 (c) Sharpen (d) Shift

Figure 6. GPGPU energy saving over different ACAM sizes
for offline strategy and online ACAM

In order to understand how the ACAM works with different levels
of data locality, we also evaluate the ACAM framework with the
random dataset, which has no data locality. In general, multimedia
applications have high temporal locality, but few applications may
handle datasets with low data locality. In this experiment, we define

Random LocalityE E E as a GPGPU energy difference metric for

the random and locality dataset cases, where each energy
consumption is normalized to the Exact-FPU case. Table 2 lists E
for all applications in different dataset sizes. Intuitively, the ACAM
always performs better with the locality dataset since the proposed
TD-LRU is optimized to find the locality of the data. We also
observed that the energy difference grows as the data size increases,
since the online learning algorithm can make better decisions for
image selections based on the locality. Therefore, in this case, the
best energy saving occurs in the largest dataset where learning
algorithm has better chance to find the relevant image for profiling.
However, we also observed that, even with the random dataset, the
ACAM saves the energy of GPGPU and outperforms the offline
profiling strategy. It is because our learning algorithm can also
identify distinct images in different image states, thus selecting
operands which covers more representative images in the whole
dataset.

Table 2. Normalized GPGPU energy saving difference (E)

using locality and random dataset

Dataset size

100 500 1000 2000 3000 4000

Robert 0.04 0.04 0.07 0.09 0.11 0.13

Sobel 0.02 0.06 0.13 0.15 0.16 0.18

Sharpen 0.05 0.08 0.14 0.17 0.19 0.21

Shift 0.04 0.05 0.09 0.11 0.12 0.14

5. CONCLUSION
In this paper we propose an approximate computing framework
using an adaptive associative memory (ACAM) with the capability
of the runtime profiling based on online learning. To support
runtime updates for the associative memory, the proposed
technique exploits MTJ-based TCAM memory which solves the
low endurance problem of the resistive TCAM. In the proposed
technique, the machine learning algorithm is also used to find the
best images of interest based on the proposed TD-LRU algorithm.
The approximate concurrent state machine is also implemented for
profiling selected input images, decreasing the number of profiling
overhead by ~5X with a low error-rate of 5.3%. Our experimental
results on AMD southern Island GPU show that the proposed
design achieves on average 34.7% energy saving which is 2.1X

more than the offline profiling case, while providing acceptable
quality of service.

6. ACKNOWLEDGMENT
We would like to thank Mr. Mahdi Imani in Genomic Signal
Processing Laboratory at Texas A&M University for technical
discussion. This work was supported by NSF grant #1527034 and
UCSD Powell Fellowship.

7. REFERENCES
[1] S. W. Keckler, et al., "GPUs and the future of parallel computing," IEEE
Micro, pp. 7-17, 2011.
[2] H. Tabkhi, et al., "Function-Level Processor (FLP): A High Performance,
Minimal Bandwidth, Low Power Architecture for Market-Oriented MPSoCs,"
IEEE Embedded Systems Letters, vol. 6, pp. 65-68, 2014.
[3] J. Manyika, et al., "Big data: The next frontier for innovation, competition,
and productivity," 2011.
[4] B. K. Mathew, et al., "Design of a parallel vector access unit for SDRAM
memory systems," IEEE HPCA, pp. 39-48, 2000.
[5] A. Rahimi, et al., "Approximate associative memristive memory for energy-
efficient GPUs," ACM DATE, pp. 1497-1502, 2015.
[6] K. Lakshminarayanan, et al., "Algorithms for advanced packet classification
with ternary CAMs," ACM SIGCOMM Computer Communication Review, 2005,
pp. 193-204.
[7] J. Li, et al., "1 Mb 0.41 µm² 2T-2R cell nonvolatile TCAM with two-bit
encoding and clocked self-referenced sensing," IEEE JSSC, vol. 49, pp. 896-907,
2014.
[8] M. Imani, et al., "Resistive Configurable Associative Memory for
Approximate Computing," IEEE/ACM DATE, pp. 1327 – 1332, 2016.
[9] M. Imani, et al., "ReMAM: Low Energy Resistive Multi-Stage Associative
Memory for Energy Efficient Computing," IEEE ISQED, 2016
[10] S. Paul, et al., "Nanoscale reconfigurable computing using non-volatile 2-d
sttram array," IEEE-NANO, pp. 880-883, 2009.
[11] J. Cong, et al., "Energy-efficient computing using adaptive table lookup
based on nonvolatile memories," IEEE ISLPED, pp. 280-285, 2013.
[12] Y. Kim, et al., "CAUSE: critical application usage-aware memory system
using non-volatile memory for mobile devices," IEEE/ACM ICCAD, pp. 690-
696, 2015.
[13] T. Hanyu, et al., "Spintronics-based nonvolatile logic-in-memory
architecture towards an ultra-low-power and highly reliable VLSI computing
paradigm," IEEE/ACM DATE, pp. 1006-1011, 2015.
[14] T. Kohonen, “Associative memory: A system-theoretical approach”
Springer Science & Business Media, vol. 17, 2012.
[15] K. Pagiamtzis, et al., "Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey," IEEE JSSC, vol. 41, pp. 712-727, 2006.
[16] L. Chisvin, et al., "Content-addressable and associative memory:
Alternatives to the ubiquitous RAM," IEEE Computer, pp. 51-64, 1989.
[17] A. Rahimi, et al., "Energy-efficient gpgpu architectures via collaborative
compilation and memristive memory-based computing," ACM/IEEE DAC, pp.
1-6, 2014.
[18] N. Bandi, et al., "Fast data stream algorithms using associative memories,"
ACM SIGMOD, pp. 247-256, 2007.
[19] C. Ranger, et al., "Evaluating mapreduce for multi-core and multiprocessor
systems," IEEE HPCA, pp. 13-24, 2007.
[20] R. Agrawal, et al., "Fast algorithms for mining association rules," IEEE
VLDB, pp. 487-499, 1994.
[21] T. Kohonen, “Content-addressable memories” Springer Science & Business
Media, vol. 1, 2012.
[22] H. Zhang, et al., "Low power gpgpu computation with imprecise hardware,"
ACM/IEEE DAC, pp. 1-6, 2014.
[23] M. Imani, et al., "MASC: Ultra-Low Energy Multiple-Access Single-
Charge TCAM for Approximate Computing," IEEE/ACM DATE, pp. 373-378,
2016.
[24] M. Imani, et al., "Approximate Computing using Multiple-Access Single-
Charge Associative Memory," IEEE Transaction on Emerging Topics in
Computing (TETC), 2016.
[25] F. Bonomi, et al., "Beyond bloom filters: from approximate membership
checks to approximate state machines," ACM SIGCOMM Computer
Communication Review, vol. 36, pp. 315-326, 2006.
[26] Y. Hua, et al., "Locality-sensitive bloom filter for approximate membership
query," IEEE Computers, vol. 61, pp. 817-830, 2012.
[27] S. Matsunaga, et al., "Fully parallel 6T-2MTJ nonvolatile TCAM with
single-transistor-based self match-line discharge control," IEEE VLSIC, pp. 298-
299, 2011.
[28] T. M. T. Do, et al., "Smartphone usage in the wild: a large-scale analysis of
applications and context," ACM international conference on multimodal
interfaces, pp. 353-360, 2011.
[29] G. Tesauro, "Temporal difference learning and TD-Gammon," ACM
Communications, vol. 38, pp. 58-68, 1995.
[30] R. Ubal, et al., "Multi2Sim: a simulation framework for CPU-GPU
computing," IEEE/ACM PACT, pp. 335-344, 2012.
[31] X. Dong, et al., "Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory," IEEE TCAD, vol. 31, pp. 994-1007,
2012.
[32] “AMD APP SDK v2.5" Available at: “http://www.amd.com/stream”
[33] Available at: "http://www.vision.caltech.edu/Image_Datasets/Caltech101/”
[34] Q. Huynh-Thu, et al., "Scope of validity of PSNR in image/video quality
assessment," IEEE Electronics letters, vol. 44, pp. 800-801, 2008.

 (a) Robert (b) Sobel

 (c) Sharpen (d) Shift

Figure 7. Normalized energy consumption of GPGPU system

using different dataset size

