
Resistive Memory for Approximate Program
Acceleration

Mohsen Imani
CSE, UC San Diego

La Jolla, CA 92093, USA
moimani@ucsd.edu

Yan Cheng
CSE, UC San Diego

La Jolla, CA 92093, USA
yacheng@ucsd.edu

Tajana S. Rosing
CSE, UC San Diego

La Jolla, CA 92093, USA
tajana@ucsd.edu

Abstract—The Internet of Things significantly increases the
amount of data generated that strains the processing capability
of current computing systems. Approximate computing can
accelerate the computation and dramatically reduce the energy
consumption with controllable accuracy loss. In this paper, we
propose a Resistive Associative Unit, called RAU, which approx-
imates computation alongside processing cores. RAU exploits the
data locality with associative memory. It finds a row which has
the closest distance to input patterns while considering the impact
of each bit index on the computation accuracy. Our evaluation
shows that RAU can accelerate the GPGPU computation by
1.15× and improve the energy efficiency by 36% at only 10%
accuracy loss.

I. INTRODUCTION

In 2015, the number of smart devices around the world
exceeded 25 billion. This number is expected to double by
2020 [4]. The rate of data generation by the Internet of things
(IoT) will quickly overtake the capabilities of current comput-
ing systems. The need for systems that can efficiently handle
such large volumes of streaming data is undeniable. This
computational reduction is also essential in real time processes
of varieties of fields including robotics [3], biology [8], etc.
Running machine learning algorithms or multimedia appli-
cations on the general purpose processors, e.g. GPU, results
in large energy and performance inefficiency. Many of these
applications do not need highly accurate computation. Instead
of doing all computation precisely, we can instead get the
energy and performance advantages while accepting a slight
loss in accuracy of computation [27], [35].
Computing in-memory can efficiently perform the computation
without using processors. Associative memory, in a form of
a lookup table, stores commonly seen patterns and retrieves
them at runtime [2], [9], [10], [13]–[17], [19]–[21]. These
memory blocks have application in a wide domain such
as query processing [2], [16], text processing [25], search
engine [11], [28], image processing [1], [7], [18], pattern
recognition and classification [12], [23], [24]. In hardware
these memories can be implemented using ternary content
addressable memory (TCAM). TCAMs search for an input
data among all rows in parallel within a single cycle. In
CMOS technology, TCAMs are designed with SRAM cells
and consume a lot of energy for both store and search oper-
ations [6]. Non-volatile memories, such as resistive randome
access memory (ReRAMs), magnetic RAMs (MRAMs) and
ferroelectric FETs provide a solution for area and energy
efficient memory designs [26], [32]–[34]. ReRAMs with high
density and performance have very low endurance, especially
for write intensive applications. In contrast, MRAMs have high
endurance (∼ 1015) but have some issues with temperature
stability and write latency. Prior work addressed the temper-
ature issue [30], [31] and write latency of MRAMs [22].

NVM-based TCAMs can use voltage overscaling (VoS) to
inexactly match the input patterns with prestored values while
controlling for Hamming distance error as a function of
voltage [14]. In most existing work, associative memories are
used next to the processing cores for computational reuse to
reduce the redundant computations or to enable error free exe-
cution. However, large data locality in multimedia and learning
applications alongside with low search energy consumption of
NVM-based TCAMs motivate us to use associative memories
directly as a computation building blocks without processors.

An associative memory can quickly recall responses of a
function for a subset of input patterns to save energy by avoid-
ing the actual function execution on the processing element.
An associative memory is typically composed of a ternary
content-addressable memory (TCAM) to store input patterns
and an output memory to return the pre-stored output. The
operation of a TCAM goes beyond retrieving logic “0” and
“1” and it has capability to store and search wildcard [5]. This
feature opens the application of the TCAMs for approximate
computing domain, and a wide range of applications in query
processing [2], [16], text processing [25], search engine [11],
[28], image processing [1], [7], [18], pattern recognition and
classification [12], [23].

II. RESISTIVE ASSOCIATIVE UNIT

Resistive associative unit can perform faster and more
energy efficient computation. However, in order to use RAU
as a computing unit, it has to store all possible preprocessed
patterns. For a simple floating point adder, RAU needs a
TCAM with 264 rows. Clearly, energy and latency limitations
make such large TCAM blocks infeasible. We instead use
small size associative memories, shown in Fig. 1, that store
a few high frequency patterns, to represent each processing
unit. For the data that does not exactly match what is stored
in TCAM, our design returns an output which has the lowest
error. All bits do not have the same impact on the computation
result. In floating point computation, bits in the position i-th
of mantissa have two times higher impact on the computation
accuracy than i − 1th bit (1 < i < 1 < 24). Applying
selective approximation (i.e. voltage overscaling) relaxes
the computation on least significant bits with the minimal
impact on the computation accuracy [9]. Our proposed limits
the number of acceptable Hamming distances to the least
significant block (LSB) where the mantissa bits (0-23 bits
in floating point values) are stored. Indeed, at each search
operation our design finds a row with the nearest weighted
Hamming distance with the input pattern, considering bit
impact.



TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se A
m

p
lifie

r

R
o
w

 D
r
iv

e
r

0..N/m

...

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se A
m

p
lifie

r

R
o
w

 D
r
iv

e
r

Key

...

Qm-1[1..4]

Key

...

0..N/m

TCAM 2 TCAM m

Clk Clk

4

4

4

4

4

4

Qm-2[1..4]

Qm-3[1..4]

Qm-N[1..4]

Q2-1[1..4]

Q2-2[1..4]

Q2-3[1..4]

Q2-N[1..4]

S
e
n

se A
m

p
lifie

r

...

L1-1HD

L2-1HD

L3-1HD

Lm-1HD

QX-X[3]

4

TCAM Row 1

QX-X[2]

4

TCAM Row 2

...

QX-X[1]

4

Block 3

TCAM Row 1

Buffer

TCAM Row 2

...

Block 4

TCAM Row 1

TCAM Row 2

...

Block 2

QX-X[3]

4

TCAM Row 1

TCAM Row 2

...

Block 1

TCAM Row 3TCAM Row 3 TCAM Row 3 TCAM Row 3

TCAM Row NTCAM Row N TCAM Row N TCAM Row N

RON=2R RON=3R RON=4R RON=8R

R
o
w

 D
r
iv

e
r

Clk

F
ir

st
 S

ta
g

e
S

ec
o
n

d
 S

ta
g
e

Fig. 1. Resistive associative memory with capability of weighted nearest
Hamming distance search.

To provide this capability, our design splits TCAM to m
partial stages where each TCAM can search for N/m bit
in parallel. The output of each TCAM row is a log(N/m)
bits which represents the distance of the input key with
the stored value. The difference between the mismatches
on partial TCAM (¡8-bit) can be determined by having
multiple sense amplifiers with different sampling periods.
Data splitting allows us to implement selective approximation
on the TCAM blocks in order to achieve maximum energy
savings while delivering needed accuracy. The next stage
starts counting the number of mismatches in all partial
TCAMs in each row and finds a row that has the minimum
distance to the input key. This stage can be implemented
using another resistive CAM structure with different ON
resistances in bits, to give weight to mismatches in the most
significant blocks. The first block (Block1) takes the result
of sense amplifier corresponding to 1-bit Hamming distance.
Similarly, the next set of blocks (Block 2, 3 & 4) search for
the mismatches corresponding to higher distances (2-bit, 3-bit
and 4-bit distance respectively). This technique allows us to
consider the real distance of the input pattern with the stored
patterns, instead of just trusting the Hamming distance metric.

Fig. 2 shows the overview of the proposed Resistive GPU
(ReGPU) architecture utilizing RAU blocks. ReGPU has two
types of floating point units (FPUs): i) fast and energy efficient
RAU for approximate computing and ii) conventional CMOS-
based FPUs to process precise computations. In GPGPU,
each SIMD lane contains four main floating point units:
Adder (ADD), Multiplier (MUL), Multiply-accumulator
(MAC) and SQRT. FPUs accept different number of input
operands. The ADD and MUL accept two 32-bit, SQRT one
32-bit and MAC three 32-bit input operands, corresponding
to 64-bit, 32-bit and 96-bit word sizes in TCAMs. We
profile 10% of the input dataset offline to find the highest
frequency patterns corresponding to each of the FPUs
and then fill the RAUs accordingly. At runtime, RAUs
update in parallel to applications running on cores and the
computation runs completely on RAU (FPUs are clock gated).
In order to reduce the area overhead of additional circuitry,

Op1

Memory
Op1

Memory
Op1

Memory

Nearest 

Neighbor 

TCAM

Op1

Memory
Op1

Memory
Op1

Memory
Resistive 

Memory

SIMD Lane
SIMD Lane

SIMD Lane

S
ta

g
e

S
ta

g
e

S
ta

g
e

S
ta

g
e ...

M
U

X

Floating Point Execution

Resistive Associative Unit

ADD

MUL
MAC

SQRT

hit

Input 

Operands
Write 

Stage

Fig. 2. Hybrid FPUs using resistive associative units.

CMOS FPU

Sense Amplifier

ClkML
EnL

Vdd

SL SL

Cell

Crossbar TCAM

Fig. 3. Crossbar associative memory with FPUs..

both TCAM and resistive memories are implemented with
crossbar memristive technology. Fig. 3 shows the structure
of crossbar memories and how they can be implemented
on top of the floating point units with negligible area overhead.

There are two key advantages of the resistive hybrid GPUs.
First, RAU can process operations in m cycles; m− 1 search
cycles and a cycle to read the output, where m is 3 or 4 based
on the RAU size. While the floating point units require deep
pipeline stage to process the data (23 cycles in AMD Southern
Island GPU). This significantly accelerates FPU computation.
Secondly, associative computing with 512 rows requires 4×
lower energy than FPUs for each computation. For error-
tolerant applications processing the computation on RAU can
result in significant GPGPU energy savings.

The energy and performance advantages are achieved
by trading off accuracy. When RAU cannot find the exact
result for a search operation, it returns a value that has the
closest distance to the input. Accuracy is tuned by using a
sufficient number of rows per TCAM block. Larger TCAM
also has higher delay and energy consumption. Fortunately,
for some machine learning algorithms (e.g. convolutional
neural network) and multimedia applications (e.g. Robert,
Shift), small TCAMs with ¡256 rows can grantee computation



TABLE I
NORMALIZED ENERGY CONSUMPTION, SPEED UP AND QUALITY OF SERVICE OF PROPOSED RESISTIVE GPGPU.

GP-GPU GP-GPU 32-row 64-row 128-row 256-row 512-row 1024-row

Robert Norm. Energy 0.11 0.17 0.29 0.49 0.72 0.89
Speed up 3.8× 2.7× 1.9× 1.4× 1.2× 1.02×

Quality of Loss 25.2% 25.1% 24.8% 16.2% 8.3% 7.6%

Shift Norm. Energy 0.15 0.23 0.34 0.56 0.79 0.97
Speed up 3.7× 2.3× 1.3× 1.1× 1.02× 0.94×

Quality of Loss 31.2% 19.4% 14.9% 9.5% 7.4% 5.6%

accuracy of 10%.

III. EXPERIMENTAL RESULTS

We place RAU next to floating point units of AMD
Southern Island GPUs. Multi2sim, a cycle accurate CPU-
GPU simulator [29] is used for evaluation. TCAMs are
modeled with HSPICE to search for input patterns and return
a row which has the closest distance to the input key. This
design limits the inaccuracy coming from the inexact match
by applying weighted approximation. A key hits a row that
has the closest real distance (not Hamming distance) to the
input key. For example, 4-bit Hamming distance in LSB
block has the same impact of having 2-bit Hamming distance
in the second LSB block.

Table I shows the speed up and energy savings of hybrid
GPGPU using associative memories of different sizes.
Increasing the size of RAU improves computation accuracy at
the cost of increasing energy consumption and search latency.
However, the advantage of using an associative memory of
any size is much higher than conventional GPU. Running
OpenCL applications Robert and Shift on the hybrid GPGPU
results in 1.2× and 1.1× speed up, and 28% and 44% energy
savings as compared to the GPGPU computation, at less than
10% accuracy cost.

IV. ACKNOWLEDGMENTS

This work was supported by NSF grant 1527034 and Jacob
of Engineering UCSD Powell Fellowship.

REFERENCES

[1] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.
20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[2] N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi. Fast data stream algorithms
using associative memories. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 247–256. ACM, 2007.

[3] A. J. Davison. Real-time simultaneous localisation and mapping with a single camera.
In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on,
pages 1403–1410. IEEE, 2003.

[4] J. Gantz and et al. Extracting value from chaos. IDC iview, 1142:1–12, 2011.
[5] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman. Ac-dimm: associative com-

puting with stt-mram. In ACM SIGARCH Computer Architecture News, volume 41,
pages 189–200. ACM, 2013.

[6] M. Imani and H. Alimohamadi. A low power and reliable 12t sram cell considering
process variation in 16nm cmos. International journal of technology enhancements
and merging engineering research., page 76, 2014.

[7] M. Imani, Y. Cheng, and T. Rosing. Processing acceleration with resistive memory-
based computation. In Proceedings of the Second International Symposium on
Memory Systems, pages 208–210. ACM, 2016.

[8] M. Imani and et al. Optimal gene regulatory network inference using the boolean
kalman filter and multiple model adaptive estimation. In 2015 49th Asilomar
Conference on Signals, Systems and Computers, pages 423–427. IEEE, 2015.

[9] M. Imani and et al. Resistive configurable associative memory for approximate
computing. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1327–1332. IEEE, 2016.

[10] M. Imani, Y. Kim, A. Rahimi, and T. Rosing. Acam: Approximate computing based
on adaptive associative memory with online learning. In ISLPED, pages 162–167,
2016.

[11] M. Imani, Y. Kim, and T. Rosing. Nngine: Ultra-efficient nearest neighbor accelerator
based on in-memory computing.

[12] M. Imani, Y. Kim, and T. Rosing. Mpim: Multi-purpose in-memory processing using
configurable resistive memory. In Design Automation Conference (ASP-DAC), 2017
22nd Asia and South Pacific, pages 757–763. IEEE, 2017.

[13] M. Imani, P. Mercati, and T. Rosing. Remam: low energy resistive multi-stage
associative memory for energy efficient computing. In Quality Electronic Design
(ISQED), 2016 17th International Symposium on, pages 101–106. IEEE, 2016.

[14] M. Imani, S. Patil, and T. Rosing. Approximate computing using multiple-access
single-charge associative memory. 2016.

[15] M. Imani, S. Patil, and T. S. Rosing. Masc: Ultra-low energy multiple-access single-
charge tcam for approximate computing. In 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 373–378. IEEE, 2016.

[16] M. Imani, D. Peroni, Y. Kim, A. Rahimi, and T. Rosing. Efficient neural network ac-
celeration on gpgpu using content addressable memory. In 2017 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1026–1031. IEEE, 2017.

[17] M. Imani, D. Peroni, A. Rahimi, and T. Rosing. Resistive cam acceleration for tunable
approximate computing. IEEE Transactions on Emerging Topics in Computing, 2016.

[18] M. Imani, D. Peroni, and T. Rosing. Nvalt: Non-volatile approximate lookup table
for gpu acceleration. IEEE Embedded Systems Letters, 2017.

[19] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey. Exploring hyperdimen-
sional associative memory. In High Performance Computer Architecture (HPCA),
2017 IEEE International Symposium on, pages 445–456. IEEE, 2017.

[20] M. Imani, A. Rahimi, P. Mercati, and T. Rosing. Multi-stage tunable approximate
search in resistive associative memory. IEEE Transactions on Multi-Scale Computing
Systems, 2017.

[21] M. Imani and T. Rosing. Cap: Configurable resistive associative processor for near-
data computing. In Quality Electronic Design (ISQED), 2017 18th International
Symposium on, pages 346–352. IEEE, 2017.

[22] N. Khoshavi and et al. Read-tuned stt-ram and edram cache hierarchies for throughput
and energy enhancement. arXiv preprint arXiv:1607.08086, 2016.

[23] Y. Kim, M. Imani, and T. Rosing. Orchard: Visual object recognition accelerator
based on approximate in-memory processing. In International Conference on
Computer-Aided Design (ICCAD). ACM, 2017.

[24] T. Kohonen. Content-addressable memories, volume 1. Springer Science & Business
Media, 2012.

[25] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
mapreduce for multi-core and multiprocessor systems. In High Performance Com-
puter Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on, pages
13–24. Ieee, 2007.

[26] M. Saremi. A physical-based simulation for the dynamic behavior of photodoping
mechanism in chalcogenide materials used in the lateral programmable metallization
cells. Solid State Ionics, 290:1–5, 2016.

[27] F. S. Snigdha and et al. Optimal design of jpeg hardware under the approximate
computing paradigm. In Proceedings of the 53rd Annual Design Automation
Conference, page 106. ACM, 2016.

[28] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim: a simulation frame-
work for cpu-gpu computing. In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques, pages 335–344. ACM, 2012.

[29] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim: a simulation frame-
work for cpu-gpu computing. In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques, pages 335–344. ACM, 2012.

[30] M. Valad Beigi and et al. Tapas: Temperature-aware adaptive placement for 3d
stacked hybrid caches. In In international Symposium on Memory Systems (MEM-
SYS), 2016.

[31] M. Valad Beigi and et al. Tesla: Using microfluidics to thermally stabilize 3d stacked
stt-ram caches. In 34th International Conference on Computer Design (ICCD), 2016.

[32] C. J. Xue and et al. Emerging non-volatile memories: opportunities and challenges.
In Proceedings of the seventh IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, pages 325–334, 2011.

[33] X. Yin and et al. Exploiting ferroelectric fets for low-power non-volatile logic-
in-memory circuits. In IEEE/ACM International Conference On Computer Aided
Design, 2016.

[34] X. Yin and et al. Design of latches and flip-flops using emerging tunneling devices. In
2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
367–372. IEEE, 2016.

[35] R. Zhou and et al. A general sign bit error correction scheme for approximate adders.
In Proceedings of the 26th edition on Great Lakes Symposium on VLSI, pages 221–
226. ACM, 2016.


