
Processing Acceleration with Resistive Memory-based
Computation

Mohsen Imani
UC San Diego

9500 Gilman Dr, La Jolla
CA 92093, USA

moimani@ucsd.edu

Yan Cheng
UC San Diego

9500 Gilman Dr, La Jolla
CA 92093, USA

yacheng@ucsd.edu

Tajana Rosing
UC San Diego

9500 Gilman Dr, La Jolla
CA 92093, USA

tajana@ucsd.edu

ABSTRACT
The Internet of Things significantly increases the amount of
data generated that strains the processing capability of cur-
rent computing systems. Approximate computing can accel-
erate the computation and dramatically reduce the energy
consumption with controllable accuracy loss. In this paper,
we propose a Resistive Associative Unit, called RAU, which
approximates computation alongside processing cores. RAU
exploits the data locality with associative memory. It finds
a row which has the closest distance to input patterns while
considering the impact of each bit index on the computation
accuracy. Our evaluation shows that RAU can accelerate
the GPGPU computation by 1.15× and improve the energy
efficiency by 36% at only 10% accuracy loss.

CCS Concepts
•Hardware → Analysis and design of emerging de-
vices and systems;

Keywords
Associative memory, Approximate computing, Resistive com-
puting, Non-volatile memory

1. INTRODUCTION
In 2015, the number of smart devices around the world

exceeded 25 billion. This number is expected to double by
2020 [2]. The rate of data generation by the Internet of
things (IoT) will quickly overtake the capabilities of cur-
rent computing systems. The need for systems that can effi-
ciently handle such large volumes of streaming data is unde-
niable. This computational reduction is also essential in real
time processes of varieties of fields including robotics [1], bi-
ology [4], etc. Running machine learning algorithms or mul-
timedia applications on the general purpose processors, e.g.
GPU, results in large energy and performance inefficiency.
Many of these applications do not need highly accurate com-
putation. Instead of doing all computation precisely, we can
instead get the energy and performance advantages while
accepting a slight loss in accuracy of computation [13, 20,
3].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS 2016 October 3–6, 2016, Washington, DC, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4305-3. . . $15.00
DOI: http://dx.doi.org/10.1145/2989081.2989086

Computing in-memory can efficiently perform the computa-
tion without using processors [11, 5, 7]. Associative memory,
in a form of a lookup table, stores commonly seen patterns
and retrieves them at runtime. In hardware these memo-
ries can be implemented using ternary content addressable
memory (TCAM). TCAMs search for an input data among
all rows in parallel within a single cycle. In CMOS tech-
nology, TCAMs are designed with SRAM cells and consume
a lot of energy for both store and search operations. Non-
volatile memories, such as resistive randome access mem-
ory (ReRAMs), magnetic RAMs (MRAMs) and ferroelectric
FETs provide a solution for area and energy efficient mem-
ory designs [12, 19, 17, 18, 10]. ReRAMs with high den-
sity and performance have very low endurance, especially
for write intensive applications. In contrast, MRAMs have
high endurance (∼ 1015) but have some issues with temper-
ature stability and write latency. Prior work addressed the
temperature issue [16, 15] and write latency of MRAMs [9,
8]. NVM-based TCAMs can use voltage overscaling (VoS)
to inexactly match the input patterns with prestored values
while controlling for Hamming distance error as a function
of voltage [6]. In most existing work, associative memo-
ries are used next to the processing cores for computational
reuse to reduce the redundant computations or to enable
error free execution. However, large data locality in multi-
media and learning applications alongside with low search
energy consumption of NVM-based TCAMs motivate us to
use associative memories directly as a computation building
blocks without processors.

2. RESISTIVE ASSOCIATIVE UNIT
Resistive associative unit can perform faster and more en-

ergy efficient computation. However, in order to use RAU
as a computing unit, it has to store all possible preprocessed
patterns. For a simple floating point adder, RAU needs a
TCAM with 264 rows. Clearly, energy and latency limita-
tions make such large TCAM blocks infeasible. We instead
use small size associative memories, shown in Fig. 1, that
store a few high frequency patterns, to represent each pro-
cessing unit. For the data that does not exactly match what
is stored in TCAM, our design returns an output which has
the lowest error. All bits do not have the same impact on the
computation result. In floating point computation, bits in
the position i-th of mantissa have two times higher impact on
the computation accuracy than i− 1th bit (1 < i < 1 < 24).
Applying selective approximation (i.e. voltage overscaling)
relaxes the computation on least significant bits with the
minimal impact on the computation accuracy [5]. Our pro-
posed limits the number of acceptable Hamming distances to
the least significant block (LSB) where the mantissa bits (0-
23 bits in floating point values) are stored. Indeed, at each
search operation our design finds a row with the nearest
weighted Hamming distance with the input pattern, consid-

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se A
m

p
lifie

r

R
o

w
 D

r
iv

e
r

0..N/m

...

TCAM Row 1

TCAM Row 2

TCAM Row 3

TCAM Row N

...

Buffer

S
e
n

se A
m

p
lifie

r

R
o

w
 D

r
iv

e
r

Key

...

Qm-1[1..4]

Key

...

0..N/m

TCAM 2 TCAM m

Clk Clk

4

4

4

4

4

4

Qm-2[1..4]

Qm-3[1..4]

Qm-N[1..4]

Q2-1[1..4]

Q2-2[1..4]

Q2-3[1..4]

Q2-N[1..4]

S
e
n

se A
m

p
lifie

r

...

L1-1HD

L2-1HD

L3-1HD

Lm-1HD

QX-X[3]

4

TCAM Row 1

QX-X[2]

4

TCAM Row 2

...

QX-X[1]

4

Block 3

TCAM Row 1

Buffer

TCAM Row 2

...

Block 4

TCAM Row 1

TCAM Row 2

...

Block 2

QX-X[3]

4

TCAM Row 1

TCAM Row 2

...

Block 1

TCAM Row 3TCAM Row 3 TCAM Row 3 TCAM Row 3

TCAM Row NTCAM Row N TCAM Row N TCAM Row N

RON=2R RON=3R RON=4R RON=8R

R
o

w
 D

r
iv

e
r

Clk

F
ir

st
 S

ta
g
e

S
ec

o
n

d
 S

ta
g

e

Figure 1: Resistive associative memory with capa-
bility of weighted nearest Hamming distance search.

ering bit impact.

To provide this capability, our design splits TCAM to m
partial stages where each TCAM can search for N/m bit
in parallel. The output of each TCAM row is a log(N/m)
bits which represents the distance of the input key with the
stored value. The difference between the mismatches on
partial TCAM (<8-bit) can be determined by having mul-
tiple sense amplifiers with different sampling periods. Data
splitting allows us to implement selective approximation on
the TCAM blocks in order to achieve maximum energy sav-
ings while delivering needed accuracy. The next stage starts
counting the number of mismatches in all partial TCAMs
in each row and finds a row that has the minimum distance
to the input key. This stage can be implemented using an-
other resistive CAM structure with different ON resistances
in bits, to give weight to mismatches in the most significant
blocks. The first block (Block1) takes the result of sense
amplifier corresponding to 1-bit Hamming distance. Simi-
larly, the next set of blocks (Block 2, 3 & 4) search for the
mismatches corresponding to higher distances (2-bit, 3-bit
and 4-bit distance respectively). This technique allows us
to consider the real distance of the input pattern with the
stored patterns, instead of just trusting the Hamming dis-
tance metric.

Fig. 2 shows the overview of the proposed Resistive GPU
(ReGPU) architecture utilizing RAU blocks. ReGPU has
two types of floating point units (FPUs): i) fast and energy
efficient RAU for approximate computing and ii) conven-
tional CMOS-based FPUs to process precise computations.
In GPGPU, each SIMD lane contains four main floating
point units: Adder (ADD), Multiplier (MUL), Multiply-
accumulator (MAC) and SQRT. FPUs accept different num-
ber of input operands. The ADD and MUL accept two 32-
bit, SQRT one 32-bit and MAC three 32-bit input operands,
corresponding to 64-bit, 32-bit and 96-bit word sizes in TCAMs.
We profile 10% of the input dataset offline to find the highest
frequency patterns corresponding to each of the FPUs and
then fill the RAUs accordingly. At runtime, RAUs update
in parallel to applications running on cores and the com-
putation runs completely on RAU (FPUs are clock gated).
In order to reduce the area overhead of additional circuitry,
both TCAM and resistive memories are implemented with
crossbar memristive technology. Fig. 3 shows the structure
of crossbar memories and how they can be implemented on

Op1

Memory
Op1

Memory
Op1

Memory

Nearest

Neighbor

TCAM

Op1

Memory
Op1

Memory
Op1

Memory
Resistive

Memory

SIMD Lane
SIMD Lane

SIMD Lane

S
ta

g
e

S
ta

g
e

S
ta

g
e

S
ta

g
e ...

M
U

X

Floating Point Execution

Resistive Associative Unit

ADD

MUL
MAC

SQRT

hit

Input

Operands
Write

Stage

Figure 2: Hybrid FPUs using resistive associative
units.

CMOS FPU

Barier

_

+

Metal

Metal

Via to sense

amplifier

Sense Amplifier

ClkML
EnL

Vdd

SL SL
SL

BL

Rsense

Vdd

Memory

Cell

C
e
ll

TCAM

S
en

se A
m

p
lifie

r

Figure 3: Crossbar associative memory with FPUs..

top of the floating point units with negligible area overhead.

There are two key advantages of the resistive hybrid GPUs.
First, RAU can process operations in m cycles; m−1 search
cycles and a cycle to read the output, where m is 3 or 4 based
on the RAU size. While the floating point units require deep
pipeline stage to process the data (23 cycles in AMD South-
ern Island GPU). This significantly accelerates FPU com-
putation. Secondly, associative computing with 512 rows
requires 4× lower energy than FPUs for each computation.
For error-tolerant applications processing the computation
on RAU can result in significant GPGPU energy savings.

The energy and performance advantages are achieved by
trading off accuracy. When RAU cannot find the exact re-
sult for a search operation, it returns a value that has the
closest distance to the input. Accuracy is tuned by using a
sufficient number of rows per TCAM block. Larger TCAM
also has higher delay and energy consumption. Fortunately,
for some machine learning algorithms (e.g. convolutional
neural network) and multimedia applications (e.g. Robert,
Shift), small TCAMs with <256 rows can grantee computa-
tion accuracy of 10%.

3. EXPERIMENTAL RESULTS
We place RAU next to floating point units of AMD South-

ern Island GPUs. Multi2sim, a cycle accurate CPU-GPU

Table 1: Normalized energy consumption, speed up and quality of service of proposed resistive GPGPU.

GP-GPU GP-GPU 32-row 64-row 128-row 256-row 512-row
1024-
row

Robert
Norm. Energy 0.11 0.17 0.29 0.49 0.72 0.89

Speed up 3.8× 2.7× 1.9× 1.4× 1.2× 1.02×
Quality of Loss 25.2% 25.1% 24.8% 16.2% 8.3% 7.6%

Shift
Norm. Energy 0.15 0.23 0.34 0.56 0.79 0.97

Speed up 3.7× 2.3× 1.3× 1.1× 1.02× 0.94×
Quality of Loss 31.2% 19.4% 14.9% 9.5% 7.4% 5.6%

simulator [14] is used for evaluation. TCAMs are modeled
with HSPICE to search for input patterns and return a row
which has the closest distance to the input key. This design
limits the inaccuracy coming from the inexact match by ap-
plying weighted approximation. A key hits a row that has
the closest real distance (not Hamming distance) to the in-
put key. For example, 4-bit Hamming distance in LSB block
has the same impact of having 2-bit Hamming distance in
the second LSB block.

Table 1 shows the speed up and energy savings of hybrid
GPGPU using associative memories of different sizes. In-
creasing the size of RAU improves computation accuracy
at the cost of increasing energy consumption and search la-
tency. However, the advantage of using an associative mem-
ory of any size is much higher than conventional GPU. Run-
ning OpenCL applications Robert and Shift on the hybrid
GPGPU results in 1.2× and 1.1× speed up, and 28% and
44% energy savings as compared to the GPGPU computa-
tion, at less than 10% accuracy cost.

4. ACKNOWLEDGMENTS
This work was supported by NSF grant 1527034 and Ja-

cob of Engineering UCSD Powell Fellowship.

5. REFERENCES
[1] A. J. Davison. Real-time simultaneous localisation and

mapping with a single camera. In Computer Vision,
2003. Proceedings. Ninth IEEE International
Conference on, pages 1403–1410. IEEE, 2003.

[2] J. Gantz and et al. Extracting value from chaos. IDC
iview, 1142:1–12, 2011.

[3] S. Hashemi and et al. Drum: A dynamic range
unbiased multiplier for approximate applications. In
Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pages
418–425. IEEE Press, 2015.

[4] M. Imani and et al. Optimal gene regulatory network
inference using the boolean kalman filter and multiple
model adaptive estimation. In 2015 49th Asilomar
Conference on Signals, Systems and Computers, pages
423–427. IEEE, 2015.

[5] M. Imani and et al. Resistive configurable associative
memory for approximate computing. In 2016 Design,
Automation & Test in Europe Conference &
Exhibition (DATE), pages 1327–1332. IEEE, 2016.

[6] M. Imani, S. Patil, and T. Rosing. Approximate
computing using multiple-access single-charge
associative memory. 2016.

[7] M. Imani, S. Patil, and T. S. Rosing. Masc: Ultra-low
energy multiple-access single-charge tcam for
approximate computing. In 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE),
pages 373–378. IEEE, 2016.

[8] N. Khoshavi and et al. Bit-upset vulnerability factor
for edram last level cache immunity analysis. In 2016
17th International Symposium on Quality Electronic
Design (ISQED), pages 6–11. IEEE, 2016.

[9] N. Khoshavi and et al. Read-tuned stt-ram and edram
cache hierarchies for throughput and energy
enhancement. arXiv preprint arXiv:1607.08086, 2016.

[10] S. Li, P. Chi, J. Zhao, K.-T. Cheng, and Y. Xie.
Leveraging nonvolatility for architecture design with
emerging nvm. In Non-Volatile Memory System and
Applications Symposium (NVMSA), 2015 IEEE, pages
1–5. IEEE, 2015.

[11] S. Li and et al. Pinatubo: a processing-in-memory
architecture for bulk bitwise operations in emerging
non-volatile memories. In Proceedings of the 53rd
Annual Design Automation Conference, page 173.
ACM, 2016.

[12] M. Saremi. A physical-based simulation for the
dynamic behavior of photodoping mechanism in
chalcogenide materials used in the lateral
programmable metallization cells. Solid State Ionics,
290:1–5, 2016.

[13] F. S. Snigdha and et al. Optimal design of jpeg
hardware under the approximate computing
paradigm. In Proceedings of the 53rd Annual Design
Automation Conference, page 106. ACM, 2016.

[14] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.
Multi2sim: a simulation framework for cpu-gpu
computing. In Proceedings of the 21st international
conference on Parallel architectures and compilation
techniques, pages 335–344. ACM, 2012.

[15] M. Valad Beigi and et al. Tapas: Temperature-aware
adaptive placement for 3d stacked hybrid caches. In In
international Symposium on Memory Systems
(MEMSYS), 2016.

[16] M. Valad Beigi and et al. Tesla: Using microfluidics to
thermally stabilize 3d stacked stt-ram caches. In 34th
International Conference on Computer Design
(ICCD), 2016.

[17] C. J. Xue and et al. Emerging non-volatile memories:
opportunities and challenges. In Proceedings of the
seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
pages 325–334, 2011.

[18] X. Yin and et al. Exploiting ferroelectric fets for
low-power non-volatile logic-in-memory circuits. In
IEEE/ACM International Conference On Computer
Aided Design, 2016.

[19] X. Yin and et al. Design of latches and flip-flops using
emerging tunneling devices. In 2016 Design,
Automation & Test in Europe Conference &
Exhibition (DATE), pages 367–372. IEEE, 2016.

[20] R. Zhou and et al. A general sign bit error correction
scheme for approximate adders. In Proceedings of the
26th edition on Great Lakes Symposium on VLSI,
pages 221–226. ACM, 2016.

