
ReMAM: Low Energy Resistive Multi-Stage Associative Memory for Energy

Efficient Computing

Mohsen Imani, Pietro Mercati, Tajana Rosing

Computer Science and Engineering Department

University of California San Diego, La Jolla, CA 92093, USA

E-mail: {moimani, pimercat, tajana}@ucsd.edu

Abstract
The Internet of things (IoT) significantly increases the

volume of computations and the number of running

applications on processors, from mobiles to servers. Big data

computation requires massive parallel processing and

acceleration. In parallel processing, associative memories

represent a promising solution to improve energy efficiency

by eliminating redundant computations. However, the tradeoff

between memory size and search energy consumption limits

their applications. In this paper, we propose a novel low

energy Resistive Multi-stage Associative Memory (ReMAM)

architecture, which significantly reduces the search energy

consumption by employing selective row activation and in-

advance precharging techniques. ReMAM splits the search in

the Ternary Content Addressable Memory (TCAM) to a

number of shorter searches in consecutive stages. Then, it

selectively activates TCAM rows at each stage based on the

hits of previous stages, thus enabling energy saving. The

proposed in-advance precharging technique mitigates the

delay of the sequential TCAM search and limits the number of

precharges to two low-cost steps. Our experimental evaluation

on AMD Southern Island GPUs shows that ReMAM reduces

energy consumption by 38.2% on average, which is 1.62X

larger than using GPGPU with conventional single-stage

associative memory.

Keywords
Associative memory, Ternary content addressable

memory, Non-volatile memory, GPU

1. Introduction
The Internet of Things (IoT) increases the number of

computations and running applications on processors [1, 2],

from mobiles to servers. Big data computation demands for

efficient massive parallel processing [1, 3]. However, parallel

processing is extremely energy hungry. The idea of associative

memory has been introduced to reduce the energy

consumption by eliminating redundant computations [4-9].

Associative memory compares input data with a set of pre-

stored data and searches for the corresponding result. If a

matching is found, computation is clock-gated, enabling

energy saving. Associative memories can be implemented in

both software and hardware. Software solutions are based on a

hashing where frequent data can be stored and retrieved from

table using a set of keys [10]. In hardware, they are

implemented with Ternary Content Addressable Memory

(TCAM) blocks [5, 6].

Existing designs include both CMOS-based and non-

volatile memory (NVM)-based TCAMs. CMOS-based

TCAMs have a higher energy consumption, which limits their

usage to network applications and classification [11]. In this

scenario, NVMs offer an opportunity for building more energy

efficient associative memories, as they have high density and

low leakage power consumption [12-14]. Among NVMs,

Resistive RAMs are a promising technology for associative

memories [15, 16].

The use of “approximate” NVM-based TCAMs can help

reducing energy consumption further, through the

implementation of voltage overscaling (VOS) [17] [7]. While

in CMOS-based TCAM the VOS significantly degrades the

computation accuracy due to timing error and process

variations[17, 18], in non-volatile memories the VOS trades

search energy by accepting an arbitrary hamming distance

between the input and the pre-stored patterns [7].

In every search cycle, all TCAM lines are precharged and

discharged. This is the main reason of TCAM energy

consumption. In this paper we propose Resistive Multi-stage

Associative Memory (ReMAM), a new hardware associative

memory architecture that significantly decreases search energy

consumption by employing two novel techniques: selective

row activation and in-advance precharging. With selective

row activation, ReMAM splits the TCAM search into a

number of shorter searches and selectively activates rows

based on the hit of the previous stages, thus reducing energy

consumption. At the same time, in-advance precharging

allows mitigating the delay of sequential TCAM access. This

limits the number of precharges to only two steps for ReMAM

with arbitrary number of stages. Our experimental evaluation

on AMD Southern Island GPU architecture running five

OpenCL applications shows that the proposed ReMAM

architecture reduces the energy consumption of the GPGPU

by 38.2% on average. Results also indicates that ReMAM

achieves very high energy saving on systems with large

associative memory. Such energy saving is 1.62X higher than

the case of GPGPU using conventional resistive associative

memory.

The remaining of the paper is organized as follows. Section

2 reviews the related work. Section 3 describes the

architecture of NVM-based associative memories and related

challenges. Section 4 presents the proposed ReMAM

978-1-5090-1213-8/16/$31.00 ©2016 IEEE 101 17th Int'l Symposium on Quality Electronic Design

architecture. Section 5 shows the experimental setup and

results. Finally, section 6 concludes this paper.

2. Related Work
Associative memories exploit the high number of pattern

similarities of parallel processing to decrease the amount of

computations [4-7, 19]. Associative memories are

implemented using TCAM blocks. TCAMs in CMOS

technology have low density and high energy consumption,

which limits their application [11].

Recent research work uses NVMs as a replacement for

CMOS-based TCAMs due to their low search energy, low

leakage power and high density [12-14, 20]. Resistive RAM

(ReRAM) and Spin-transfer Torque RAM (STT-RAM) are

two kinds of high speed and reliable NVMs based respectively

on memristive devices and magnetic tunneling junctions

(MTJ) [21]. The endurance of the Resistive RAMs sets a limit

to 106-107 write operations while for STT-RAMs this value is

much higher (more than 1015). Li, et al. designed a 1Mb

energy efficient 2T-2R (2-Transistor/2-Memristor) TCAM,

which is 10X smaller than SRAM-based TCAM [12]. Chang,

et al. in [22] proposed 3T-1R TCAM cell which performs a

search in less than 1-ns using 0.61fJ/search/bit. An efficient

2Kb 4T-2MTJ cell is proposed in [23]. This cell is for

standby-power-free TCAM and has 86% area reduction with

respect to SRAM-based design. Hanyu, et al. in [24]

introduced a 5T-4MTJ TCAM cell with very low energy and

high sense merging. Although MTJ-based TCAMs have

higher endurance, the ReRAM-based TCAMs have better

search speed (ON/OFF resistive ratio) and area efficiency,

which makes them more suitable for low energy associative

memories. For this reason, in this paper we adopt resistive

technology rather than STT-RAMs. Also, to mitigate the

effect of a lower endurance, our ReMAM design limits to only

one write in kernel level.

 Although associative memories are used in multiple

contexts, in this section we review recent work targeting

GPUs. In GPUs, memoization reduces the energy overhead of

error recovery by exploiting data locality, as reported in

reference [25]. In this work, a single cycle look-up table has

been implemented alongside each Floating Point Unit (FPU)

to maintain error-free execution. Zhang, et al. [17] leverage

VOS for “imprecise” FPUs in GPU computation. However,

imprecise blocks like the SRAM-based LUTs suffer from high

error-rate under VOS [17]. Similarly, an approximate

associative memristive memory architecture is introduced in

[7] to reduce the TCAM energy consumption by applying

VOS. Rahimi, et al. in [19] used a memristor-based look-up

table to increase the computational reuse in GPGPUs. The

above publications show that approximation techniques may

severely degrade the computation accuracy. In this work,

instead, we show that ReMAM is robust when VOS is applied.

Our proposed multi-stage associative memory architecture

is orthogonal to other TCAM energy reduction techniques,

such as VOS. In contrast to all previous designs, ReMAM

reduces the energy consumption by decreasing the number of

active lines. The proposed architecture gradually reduces the

number of active rows stage by stage using selective row

activation. Also, it mitigates the delay of the multi-stage

TCAM block using in-advance precharging technique.

3. Resistive Associative Memory
Previous work introduced Resistive Associative Memory

(ReAM), consisting of two main blocks, TCAM and resistive

1T-1R memory. A set of frequent input patterns and their

corresponding results are pre-stored on TCAM and 1T-1R

memory respectively. When a computation is issued, the

operands are searched in parallel on the TCAM. If there is

matching, the computing unit is clock-gated, enabling energy

saving, and the corresponding result stored in the 1T-1R

memory is returned.

TCAMs are the main components of associative memories.

In NVM-based TCAMs, values are stored on cells based on

the NVMs resistance state (Low or High). During search

mode, the input operands are compared with all pre-stored

TCAM patterns and if the data is found, a charged Match Line

(ML) interrupts the processor computation by using clock-

gating technique. In this paper we use 3T-1R cells as in [22]

for TCAMs, which have been demonstrated to have

advantages over previous cells [12, 26]. To reduce the

effective load/capacitance of the ML, each cell is connected to

it with a single junction, which results in a higher search speed

and a lower energy consumption. Resistive 1T-1R memory

consists of cells made by one memristor and one access

transistor. Such cell is used to store the results of

computations. The hit on the TCAM activates the

corresponding line of the 1T-1R memory to retrieve the result

of computation.

Several associative memory applications require a TCAM

with both large word size and high number of rows to store

long keys and improve the hit-rate [9, 27]. However, having a

TCAM with large size exacerbates some problems, described

in the following.

(i) Word size: A large word size decreases the stability of

the TCAM because of the high leakage currents of cells

connected to the match-line (ML). These leakage currents can

result in wrong search operations [8, 9]. One solution is to

split the TCAM to multiple shorter searches, which can be

either sequential or parallel. Sequential access increases the

search delay and degrades the average time that the processor

can be clock-gated. On the other hand, a parallel search

requires an OR gate to find the line corresponding to all partial

TCAM matches. This results in energy and area overhead.

(ii) Number of rows: A TCAM with a large number of

rows requires big and power hungry input buffers to distribute

the input signal to all rows. The delay introduced by big

buffers prevents searching in the entire block on a single cycle

and degrades energy efficiency.

(iii) Search energy: For each search operation, resistive

associative memory requires a complete precharging among

all TCAM rows. The search operation is energy hungry

because of the high number of charges and discharges. The

search operation on a large TCAM limits the energy efficiency

of using associative memory and their application.

Our ReMAM architecture addresses the first two problems

by adopting a multi-stage structure with sequential access.

This allows to have shorter rows in consecutive stages, which

enables having a higher number of rows on each stage. Also,

we address the third problem by introducing selective row

activation technique. Finally, we mitigate the delay associated

with sequential access by adopting in-advance precharging.

The following section will explain the details of ReMAM

architecture and proposed technique.

4. Proposed ReMAM

4.1. ReMAM architecture

This section describes the proposed ReMAM architecture
and the details of the two techniques: selective row activation
and in-advance precharging. Figure 1 shows the structure of
ReMAM. It is composed by a multi-stage TCAM and a 1T-1R
memory block.

While standard associative memory has a single TCAM

block, ReMAM splits it into m shorter stages. When the

computing unit is performing a computation, the first N/m bits

of each operand are searched on the first stage, where N is the

size of the input. In case of a hit on some lines, the

architecture employs selective row activation by sending

EnL_1 signal to the next stage to enable (precharge) only the

corresponding lines. Then, the architecture searches the

following N/m bits of the input data on the second stage just

on the selected rows. This procedure is repeated until the last

stage. This technique gradually reduces the number of active

rows from the 2nd to the mth stage. Reducing the number of

precharges on active rows enables energy saving. After

traversing all TCAM stages, if the pattern exists on the

TCAM, one of the MLs in the mth stage will stay in high

voltage state (VDD) and activate the Enl_m signal. A hit in the

mth stage stops the computation by clock-gating technique. At

the same time, this signal activates the corresponding row of

1T-1R memory in order to read the pre-stored result of

computation.

Sequential row activation on the TCAM determines a large

search delay, because each stage needs to wait for the

following one to precharge before moving on. To considerably

reduce such delay, we propose in-advance precharging

technique. This technique precharges each row in a stage

(row-driver activation) based on the hit of the second previous

stage. For example, in a m-stage TCAM, when data is

searched in the kth TCAM stage, the (k+1)th stage precharges

the rows based on (k-1)th stage hits (2<k <m+1). Note that a

ReMAM with any number of stages still has some delay due

to the precharge of the first two stages. Indeed, the delay

reduction given by in-advance precharging takes place from

the third stage. However, these two initial precharging steps

can be done quickly on a short word size TCAM, with

negligible impact.

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

D

A

B

B

C

A

B

F

B

C

C

C

A

F

C

D

B

F

A

A

D

F

C

B

D

A

B

B

C

A

B

F

B

C

C

C

A

F

C

D

Active Row

Inactive Row Inactive line

All Partial TCAM hit

(a)

(b)

A

C

D

B

F

D

F

D

A

C

D

B

F

D

F

D

Active line (hit)

B

F

A

A

D

F

C

B

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

1T-1R MemoryTCAMTCAMTCAMTCAM

TCAM TCAM TCAMTCAM 1T-1R Memory

Figure 2. Example of searching “ABCD” string on 4-stage ReMAM (a)

without and (b) with selective row activation and in-advance precharging

technques.

In the following we show an example to clarify the

advantages of the proposed design. Figure 2 shows a

comparison of a 8-row, 4-stage ReMAM in which selective

row activation and in-advance precharging are respectively

disabled (Figure 2.a) and enabled (Figure 2.b). The goal is to

search for “A B C D” string in TCAM. Each digit can be

stored on one stage. In the first case, the TCAM row activation

does not depend on previous TCAM hits, and all stages are

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

...

Buffer

S
en

se A
m

p
lifier

Input Key

R
o
w

 D
riv

er

Clk

EnL_1

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Buffer

S
en

se A
m

p
lifier

R
o
w

 D
riv

er

EnL_2
TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Buffer

S
en

se A
m

p
lifier

R
o
w

 D
riv

er

EnL_m

...

1
st
 Stage 2

nd
 Stage

TCAM

m
th

 Stage

TCAM

EnL_1 EnL_m-2

1T-1R Memory row

Resistive Memory

1T-1R Memory row

1T-1R Memory row

1T-1R Memory row

R
o
w

 D
riv

er

EnL_m-1

Sense Amplifier

(m+1)
th

 Stage

TCAM

N

N/m
N/m

N/m

Sense circuitry

ML

Precharger

ML

EnL_1

E
n

L
s

Sense Amplifiers

Bit Lines
Buffer

S
en

se
 A

m
p

li
fi

er
s

MLs

E
n

L
s

Key

DLn

DLp

SLn

SLp

......

Figure 1. Proposed ReMAM structure.

precharged at the same time. The proposed ReMAM, instead,

activates the rows based on the hit of previous stages. Based

on our explanation, the row activation on the 3rd, 4th and 1T-

1R memory is done based on the hits of 1st, 2nd and 3rd stages

respectively. The selective row activation significantly reduces

the number of active rows, and consequently ReMAM energy

consumption. At the same time, in-advance precharging

guarantees a consistent delay reduction.

4.2. ReMAM stages
The number of TCAM stages has a major impact on the

associative memory energy consumption. Indeed, there is a

tradeoff between the number of stages and the energy

consumption of the ReMAM. Splitting the TCAM increases

the number of hit rows on the first stages and progressively

reduces the number of active rows on the following stages and

resistive memory. Moreover, it reduces the energy

consumption of the first TCAM stages by shortening the word

size.

However, with a preliminary study we observed that in

case of a 2-bit line in the first stage, the number of hits is high,

which results in a large number of active rows in the following

stages, thus a reduced opportunity for energy saving. To

counteract this problem, we set a lower bound on the size of

bitline on the first stage TCAM to 4-bit for any partitioned

TCAM. Our evaluation revealed that having at least 4-bit lines

in the first stage provides best results among other possible

sizes, so we report only this case in the paper.

Note that the application of the proposed low energy

associative memory is not limited to GPU processing. Thanks

to multi-stage search operation, ReMAM can be used for

search engines, searching and sorting, image coding, pattern

recognition, query processing and several machine learning

based processing, as well as previous work on associative

memory [28, 29]. In most of these applications, the goal is to

search a long key containing several digits on TCAM. If the

first digit is not available, there is no need to go further. For

this reason, we consider ReMAM as a promising solution for a

broad range of applications.

5. Experimental Results

5.1. Experimental setup and support framework
We implemented the proposed ReMAM architecture on the

AMD Southern Island GPU, Radeon HD 7970 device, which

is one of the most recent GPU architectures. The benchmark

applications have been adopted from AMD APP SDK v2.5 in

OpenCL, to make it suitable for stream processing [30]. We

run five popular OpenCL applications, to test the efficiency of

ReMAM: Sobel, Robert, Sharpen, BlackScholes and

DwtHaar1D. The first three are image processing benchmarks,

while the last two are general purpose applications. This

makes the evaluation more robust in the context of GPGPUs.

We use Multi2sim to simulate the described device [31]. This

is a cycle accurate CPU-GPU simulator of which we modified

the kernel code to enable profiling and run-time simulation.

We extracted the most frequent patterns for adder (ADD),

multiplier (MUL), multiplier-accumulator (MAD) and SQRT

FPU computations. To obtain energy and delay, the 6-stage

balanced FPUs are designed using Synopsys Design Compiler

in 45-nm ASIC flow [32]. FPUs are optimized for power,

based on measured delay of the TCAM in different sizes.

In GPGPUs, the FPUs have a different number of input

operands. The ADD and MUL accept two 32-bit, SQRT a 32-

bit and MAD three 32-bit input operands. Therefore, their

related TCAMs need to have 64-bit, 32-bit and 96-bit word

sizes respectively. The circuit level simulation of TCAM

design has been performed on HSPICE simulator considering

45-nm technology. For sizing, capacitors and resistors we used

the experimental details of reference [22].

We also present a framework which is compatible with

OpenCL as a standard for parallel programming of

heterogeneous systems. The execution flow of ReMAM has

two main steps: design time profiling and run-time reuse. In

profiling, we use an OpenCL kernel and a host code to train

the associative memory values based on an input dataset. We

used 100 random images from Caltech 101 computer vision

[33] as input dataset for image processing applications (Sobel,

Robert and Sharpen). For the remaining two applications, we

test them on a sequence of input numbers with 100 different

size. The training is done on 10% of the input dataset,

extracted randomly. After that, the host code starts to save and

rank the input patterns for each FPUs based on their frequency

of occurrence. In this state, the AMD compute abstraction

layer provides a runtime device driver library and allows host

program to work with the stream cores in lowest level. The

programming of the TCAMs is done at the software level by

using the host code. Note that all TCAMs associated with

instances of the same kind of FPUs are programmed

concurrently with the same data.

5.2. ReMAM and TCAM sizing
A TCAM with a high number of rows improves the hit-rate

and the average time that FPU can be clock-gated. In the

proposed ReMAM architecture, the energy consumption has

been decreased by utilizing selective row activation and in-

advance precharging techniques. Figure 4 compares the

TCAM delay and search energy consumption for a single-

stage and for the proposed multi-stage TCAM in different

sizes for the Sobel application. The search energy

consumption of a conventional TCAM is application-

independent, because all lines are activated at each search. On

the other hand, in the proposed multi-stage TCAM the number

activated rows, and thus the energy consumption, depends on

hit-rate and application type. In ReMAM, the energy

consumption is lower than ReAM since it just consumes

maximum energy on the first TCAM stage and the rest of the

stages and resistive memory have fewer active rows. Such

energy consumption decreases further if we split TCAM into

more stages. Going from 8 to 15 stages increases the TCAM

delay severely with only a small energy improvement. This

happens because our design sets a lower bound on the first

TCAM stage to 4-bit word size. At 64-row, TCAM splitting to

2-stage, 4-stage and 8-stage achieves respectively 1.8X, 2.7X

and 5.1X energy savings compared to single-stage TCAM.

The delay overheads are respectively less than 0.1ns, 0.3ns

and 0.5ns.

Figure 4. Energy consumption of the proposed multi-stage and

conventional single-stage TCAMs in different size.

Our evaluation also shows that the energy ratio of the

ReMAM to single-stage TCAM increases in large TCAM

sizes. Indeed, this increases the hit rate by including a large

number of undesired activations. This observation suggests

that the proposed ReMAM is well-suited for implementation

on large associative memories. In addition, in ReMAM the

TCAM and resistive memory rows are activated based on the

hit of the previous stages. Therefore, as Figure 4 shows, the

ReMAM delay characteristic have a low difference with

respect to conventional ReAM in large sizes.

Figure 3 compares the normalized energy consumptions of

GPGPU using the proposed ReMAM and the conventional

ReAM. The FPU energy is calculated based on the measured

delay obtained with each TCAM size. The GPGPU energy is

normalized to the FPU energy consumption in each point. The

results in and Figure 3 indicate that there is a tradeoff

between TCAM and FPU energy consumptions related to

different TCAM size. Such tradeoff can be explained as

follows.

(i) FPU energy: large TCAMs result in higher hit-rate.

Moreover, the hit-rate improvement is not linear with the

TCAM size. For example, going from 2-row to 4-row TCAM

has more impact on the hit-rate improvement than going from

64-row to 128-row. This shows the impact of higher hit-rate

on the effective FPU energy. The reason is that a higher hit-

rate increases the amount of time that FPU is in clock-gate

mode. In addition, the FPU energy depends on the TCAM

delay. The longer delay of larger TCAMs allows the Design

Compiler to optimize the FPU energy consumption. Our

results show that the FPU energy optimization continues until

a TCAM with 1024-row (6.2ns TCAM delay).

(ii) TCAM energy: a large size TCAM is a dominant

contributor to the total energy consumption. As a result, the

GPGPU using conventional ReAM has a minimum energy

point with 8-row TCAM. Decreasing TCAM energy is an

effective way to improve the total GPGPU energy

consumption. This not only affects the TCAM energy, but also

allows the system to use larger TCAMs with a higher hit-rate

to decrease the effective FPU energy consumption. As Figure

3 shows, using efficient ReMAM results in minimum GPGPU

energy point taking place with larger TCAM size (16 or 32

rows) compared to conventional ReAM. The GPGPU energy

saving are 38.2% and 23.1% on average employing ReMAM

and ReAM respectively with respect to FPU.

5.3. Energy and TCAM stages
Figure 5 shows the normalized GPGPU energy

consumption in TCAMs with different number of stages. Each

line in the graph is normalized to the FPU energy using single-

stage TCAM. In large size, splitting the TCAM increases the

number of undesired hits on stages, and limits the opportunity

for energy saving. However with a smaller size, the GPGPU

energy is not sensitive to the TCAM partitioning. Therefore,

as it is shown in Figure 5, it is preferable to split small size

TCAMs into a high number of stages. However, high

partitioning of a large TCAM, increases the number of

undesired active rows and results in GPGPU energy

degradation. In addition our evaluation indicates that in all

applications the GPGPU using 64-row ReMAM has higher

energy improvement respect to 4–row and 16-row ReMAM.

This fact indicates that ReMAM is highly desirable for

systems with large TCAM sizes. The results show that the 64-

row ReMAM decreases the energy consumption of GPGPU

computation by 27.7%, 42.2% and 41.2% on 2-stage, 4-stage

and 8-stage respectively, compared to utilizing conventional

ReAM.

(b) Robert(a) Sobel (d) BlackScholes

ReAM Delay (ns)ReAM Delay (ns)

(e) DwtHaar1D

3.4

ReAM Delay (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.3
1 1.2 1.5 1.7 2.1 2.9

1-row 2-row 4-row 8-row 16-row 32-row

TCAM Size

N
o

r
m

a
li

z
e
d

 E
n

e
r
g

y
 (

F
P

U
=

1
)

64-row

3.4

ReAM Delay (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.3
1 1.2 1.5 1.7 2.1 2.9

1-row 2-row 4-row 8-row 16-row 32-row

TCAM Size
N

o
r
m

a
li

z
e
d

 E
n

e
r
g

y
 (

F
P

U
=

1
)

64-row

3.4

ReAM Delay (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.3
1 1.2 1.5 1.7 2.1 2.9

1-row 2-row 4-row 8-row 16-row 32-row

TCAM Size

N
o

r
m

a
li

z
e
d

 E
n

e
r
g

y
 (

F
P

U
=

1
)

64-row

3.4

ReAM Delay (ns)

0

0.2

0.4

0.6

0.8

1

1.2

1.3
1 1.2 1.5 1.7 2.1 2.9

1-row 2-row 4-row 8-row 16-row 32-row

TCAM Size

N
o

r
m

a
li

z
e
d

 E
n

e
r
g

y
 (

F
P

U
=

1
)

64-row

3.4

ReAM ReMAM (4-Stage)

Figure 3. Normalized GPGPU energy consumption using ReMAM and conventional ReAM.

(b) Robert (d) BlackScholes (e) DwtHaar1D(a) Sobel

N
o

rm
a

li
ze

d
 G

P
G

P
U

 E
n

er
g

y

0.5

0.6

0.7

0.8

0.9

1

2-Stage 4-Stage 8-Stage1-Stage

TCAM Size
15-Stage

N
o

rm
a

li
ze

d
 G

P
G

P
U

 E
n

er
g

y

0.5

0.6

0.7

0.8

0.9

1

2-Stage 4-Stage 8-Stage1-Stage

TCAM Size
15-Stage

0.4 0.4

N
o

rm
a

li
ze

d
 G

P
G

P
U

 E
n

er
g

y

0.5

0.6

0.7

0.8

0.9

1

2-Stage 4-Stage 8-Stage1-Stage

TCAM Size
15-Stage

0.4

N
o

rm
a

li
ze

d
 G

P
G

P
U

 E
n

er
g

y

0.5

0.6

0.7

0.8

0.9

1

2-Stage 4-Stage 8-Stage1-Stage

TCAM Size
15-Stage

0.4

4-row TCAM 16-row TCAM 64-row TCAM

Figure 5. Normalized GPGPU energy consumption using ReMAM with different number of stages.

6. Conclusion
We proposed a novel low energy Resistive Multi-stage

Associative Memory architecture named ReMAM, which

splits the TCAM search to a sequence of shorter stages. The

proposed architecture employs selective row activation and in-

advance precharging techniques to reduce energy

consumption and mitigate the delay of sequential access. The

search operation in the proposed ReMAM can be done with

very low energy consumption depending on the number of

TCAM stage and application type. Our experimental results on

AMD Southern Island GPU show that ReMAM decreases the

system energy consumption of GPGPU more than 38.2% with

error-free computation. Finally, we show that ReMAM is

particularly beneficial for systems with large size associative

memory.

Acknowledgement
This work was sponsored by NSF grant #1527034.

7. References
[1] C. Perera, et al., "Context aware computing for the internet of things:

A survey," IEEE, Communications Surveys & Tutorials, vol. 16, pp. 414-

454, 2014.

[2] J. Gubbi, et al., "Internet of Things (IoT): A vision, architectural

elements, and future directions," Elsevier, Future Generation Computer

Systems, vol. 29, pp. 1645-1660, 2013.

[3] J. Manyika, et al., "Big data: The next frontier for innovation,

competition, and productivity," 2011.

[4] T. Kohonen, “Associative memory: A system-theoretical approach”,

Springer Science & Business Media, vol. 17, 2012.

[5] K. Pagiamtzis, et al., "Content-addressable memory (CAM) circuits

and architectures: A tutorial and survey," IEEE ISSC, vol. 41, pp. 712-

727, 2006.

[6] L. Chisvin, et al., "Content-addressable and associative memory:

Alternatives to the ubiquitous RAM," IEEE Computer, pp. 51-64, 1989.

[7] A. Rahimi, et al., "Approximate associative memristive memory for

energy-efficient GPUs," IEEE DATE, pp. 1497-1502, 2015.

[8] M. Imani, et al., "Resistive Configurable Associative Memory for

Approximate Computing," IEEE DATE, 2016.

[9] M. Imani, et al., "MASC: Ultra-Low Energy Multiple-Access Single-

Charge TCAM for Approximate Computing," IEEE DATE, 2016.

[10] W. Eatherton, et al., "Tree bitmap: hardware/software IP lookups

with incremental updates," ACM SIGCOMM Computer Communication

Review, vol. 34, pp. 97-122, 2004.

[11] K. Lakshminarayanan, et al., "Algorithms for advanced packet

classification with ternary CAMs," ACM SIGCOMM Computer

Communication Review, pp. 193-204, 2005.

[12] J. Li, et al., "1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With

Two-Bit Encoding and Clocked Self-Referenced Sensing," IEEE JSSC,

vol. 49, pp. 896-907, 2014.

[13] S. Paul, et al., "Nanoscale reconfigurable computing using non-

volatile 2-d sttram array," IEEE Nanotechnology, pp. 880-883, 2009.

[14] J. Cong, et al., "Energy-efficient computing using adaptive table

lookup based on nonvolatile memories," IEEE ISLPED, , pp. 280-285,

2013.

[15] Y. Kim, et al., "CAUSE: critical application usage-aware memory

system using non-volatile memory for mobile devices," in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design,

2015, pp. 690-696.

[16] S. N. Mozaffari, et al., "Fast march tests for defects in resistive

memory," IEEE/ACM Nanoarch, pp. 88-93, 2015.

[17] H. Zhang, et al., "Low power gpgpu computation with imprecise

hardware," IEEE DAC, pp. 1-6, 2014.

[18] M. Imani, et al., "Hierarchical design of robust and low data

dependent FinFET based SRAM array," IEEE/ACM Nanoarch, pp. 63-

68, 2015.

 [19] A. Rahimi, et al., "Energy-efficient gpgpu architectures via

collaborative compilation and memristive memory-based computing,"

IEEE DAC, pp. 1-6, 2014.

[20] B. Yan, et al., "A High-Speed Robust NVM-TCAM Design Using

Body Bias Feedback," ACM GLSVLSI, pp. 69-74, 2015.

[21] Y. Xie, “Emerging Memory Technologies: Design, Architecture, and

Applications,” Springer Science & Business Media, 2013.

[22] M.-F. Chang, et al., "A 3T1R Nonvolatile TCAM Using MLC

ReRAM with Sub-1ns Search Time," IEEE ISSCC, 2015.

[23] S. Matsunaga, et al., "A 3.14 um 2 4T-2MTJ cell fully parallel

TCAM based on nonvolatile logic-in-memory architecture," IEEE

VLSIC, pp. 44-45, 2012.

[24] T. Hanyu, et al., "Spintronics-based nonvolatile logic-in-memory

architecture towards an ultra-low-power and highly reliable VLSI

computing paradigm," IEEE DATE, pp. 1006-1011, 2015.

[25] A. Rahimi, et al., "Temporal memoization for energy-efficient

timing error recovery in gpgpus," IEEE DATE, 2014.

[26] L.Y. Huang, et al., "ReRAM-based 4T2R nonvolatile TCAM with

7x NVM-stress reduction, and 4x improvement in speed-wordlength-

capacity for normally-off instant-on filter-based search engines used in

big-data processing," IEEE VLSIC, pp. 1-2, 2014.

[27] Q. Guo, et al., "AC-DIMM: associative computing with STT-

MRAM," ACM SIGARCH, pp. 189-200, 2013.

[28] N. Bandi, et al., "Fast data stream algorithms using associative

memories," ACM SIGMOD, pp. 247-256, 2007.

[29] T. Kohonen, “Content-addressable memories,” Springer Science &

Business Media, vol. 1, 2012.

[30] "AMD APP SDK v2.5" “http://www.amd.com/stream”.

[31] R. Ubal, et al., "Multi2Sim: a simulation framework for CPU-GPU

computing," in ACM PACT, pp. 335-344, 2012.

[32] Design Compiler, "Synopsys Inc," ed, 2000.

[33] "http://www.vision.caltech.edu/Image_Datasets/Caltech1”

