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Abstract  
The Internet of things (IoT) significantly increases the 

volume of computations and the number of running 

applications on processors, from mobiles to servers. Big data 

computation requires massive parallel processing and 

acceleration. In parallel processing, associative memories 

represent a promising solution to improve energy efficiency 

by eliminating redundant computations. However, the tradeoff 

between memory size and search energy consumption limits 

their applications. In this paper, we propose a novel low 

energy Resistive Multi-stage Associative Memory (ReMAM) 

architecture, which significantly reduces the search energy 

consumption by employing selective row activation and in-

advance precharging techniques. ReMAM splits the search in 

the Ternary Content Addressable Memory (TCAM) to a 

number of shorter searches in consecutive stages. Then, it 

selectively activates TCAM rows at each stage based on the 

hits of previous stages, thus enabling energy saving. The 

proposed in-advance precharging technique mitigates the 

delay of the sequential TCAM search and limits the number of 

precharges to two low-cost steps. Our experimental evaluation 

on AMD Southern Island GPUs shows that ReMAM reduces 

energy consumption by 38.2% on average, which is 1.62X 

larger than using GPGPU with conventional single-stage 

associative memory.  
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1. Introduction 
The Internet of Things (IoT) increases the number of 

computations and running applications on processors [1, 2], 

from mobiles to servers. Big data computation demands for 

efficient massive parallel processing [1, 3]. However, parallel 

processing is extremely energy hungry. The idea of associative 

memory has been introduced to reduce the energy 

consumption by eliminating redundant computations [4-9]. 

Associative memory compares input data with a set of pre-

stored data and searches for the corresponding result. If a 

matching is found, computation is clock-gated, enabling 

energy saving. Associative memories can be implemented in 

both software and hardware. Software solutions are based on a 

hashing where frequent data can be stored and retrieved from 

table using a set of keys [10]. In hardware, they are 

implemented with Ternary Content Addressable Memory 

(TCAM) blocks [5, 6].  

Existing designs include both CMOS-based and non-

volatile memory (NVM)-based TCAMs. CMOS-based 

TCAMs have a higher energy consumption, which limits their 

usage to network applications and classification [11]. In this 

scenario, NVMs offer an opportunity for building more energy 

efficient associative memories, as they have high density and 

low leakage power consumption [12-14]. Among NVMs, 

Resistive RAMs are a promising technology for associative 

memories [15, 16].  

The use of “approximate” NVM-based TCAMs can help 

reducing energy consumption further, through the 

implementation of voltage overscaling (VOS) [17] [7]. While 

in CMOS-based TCAM the VOS significantly degrades the 

computation accuracy due to timing error and process 

variations[17, 18], in non-volatile memories the VOS trades 

search energy by  accepting an arbitrary hamming distance 

between the input and the pre-stored patterns [7].  

In every search cycle, all TCAM lines are precharged and 

discharged. This is the main reason of TCAM energy 

consumption. In this paper we propose Resistive Multi-stage 

Associative Memory (ReMAM), a new hardware associative 

memory architecture that significantly decreases search energy 

consumption by employing two novel techniques: selective 

row activation and in-advance precharging. With selective 

row activation, ReMAM splits the TCAM search into a 

number of shorter searches and selectively activates rows 

based on the hit of the previous stages, thus reducing energy 

consumption. At the same time, in-advance precharging 

allows mitigating the delay of sequential TCAM access. This 

limits the number of precharges to only two steps for ReMAM 

with arbitrary number of stages. Our experimental evaluation 

on AMD Southern Island GPU architecture running five 

OpenCL applications shows that the proposed ReMAM 

architecture reduces the energy consumption of the GPGPU 

by 38.2% on average. Results also indicates that ReMAM 

achieves very high energy saving on systems with large 

associative memory. Such energy saving is 1.62X higher than 

the case of GPGPU using conventional resistive associative 

memory.  

The remaining of the paper is organized as follows. Section 

2 reviews the related work. Section 3 describes the 

architecture of NVM-based associative memories and related 

challenges. Section 4 presents the proposed ReMAM 

978-1-5090-1213-8/16/$31.00 ©2016 IEEE                              101                   17th Int'l Symposium on Quality Electronic Design





architecture. Section 5 shows the experimental setup and 

results. Finally, section 6 concludes this paper. 

 

2. Related Work 
Associative memories exploit the high number of pattern 

similarities of parallel processing to decrease the amount of 

computations [4-7, 19]. Associative memories are 

implemented using TCAM blocks. TCAMs in CMOS 

technology have low density and high energy consumption, 

which limits their application [11].  

Recent research work uses NVMs as a replacement for 

CMOS-based TCAMs due to their low search energy, low 

leakage power and high density [12-14, 20]. Resistive RAM 

(ReRAM) and Spin-transfer Torque RAM (STT-RAM) are 

two kinds of high speed and reliable NVMs based respectively 

on memristive devices and magnetic tunneling junctions 

(MTJ) [21]. The endurance of the Resistive RAMs sets a limit 

to 106-107 write operations while for STT-RAMs this value is 

much higher (more than 1015). Li, et al. designed a 1Mb 

energy efficient 2T-2R (2-Transistor/2-Memristor) TCAM, 

which is 10X smaller than SRAM-based TCAM [12].  Chang, 

et al. in [22] proposed 3T-1R TCAM cell which performs a 

search in less than 1-ns using 0.61fJ/search/bit. An efficient 

2Kb 4T-2MTJ cell is proposed in [23]. This cell is for 

standby-power-free TCAM and has 86% area reduction with 

respect to SRAM-based design. Hanyu, et al. in [24] 

introduced a 5T-4MTJ TCAM cell with very low energy and 

high sense merging. Although MTJ-based TCAMs have 

higher endurance, the ReRAM-based TCAMs have better 

search speed (ON/OFF resistive ratio) and area efficiency, 

which makes them more suitable for low energy associative 

memories. For this reason, in this paper we adopt resistive 

technology rather than STT-RAMs. Also, to mitigate the 

effect of a lower endurance, our ReMAM design limits to only 

one write in kernel level. 

 Although associative memories are used in multiple 

contexts, in this section we review recent work targeting 

GPUs. In GPUs, memoization reduces the energy overhead of 

error recovery by exploiting data locality, as reported in 

reference [25]. In this work, a single cycle look-up table has 

been implemented alongside each Floating Point Unit (FPU) 

to maintain error-free execution. Zhang, et al. [17] leverage 

VOS for “imprecise” FPUs in GPU computation. However, 

imprecise blocks like the SRAM-based LUTs suffer from high 

error-rate under VOS [17]. Similarly, an approximate 

associative memristive memory architecture is introduced in 

[7] to reduce the TCAM energy consumption by applying 

VOS.  Rahimi, et al. in [19] used a memristor-based look-up 

table to increase the computational reuse in GPGPUs. The 

above publications show that approximation techniques may 

severely degrade the computation accuracy. In this work, 

instead, we show that ReMAM is robust when VOS is applied. 

Our proposed multi-stage associative memory architecture 

is orthogonal to other TCAM energy reduction techniques, 

such as VOS. In contrast to all previous designs, ReMAM 

reduces the energy consumption by decreasing the number of 

active lines. The proposed architecture gradually reduces the 

number of active rows stage by stage using selective row 

activation. Also, it mitigates the delay of the multi-stage 

TCAM block using in-advance precharging technique. 

 

3. Resistive Associative Memory 
Previous work introduced Resistive Associative Memory 

(ReAM), consisting of two main blocks, TCAM and resistive 

1T-1R memory. A set of frequent input patterns and their 

corresponding results are pre-stored on TCAM and 1T-1R 

memory respectively. When a computation is issued, the 

operands are searched in parallel on the TCAM. If there is 

matching, the computing unit is clock-gated, enabling energy 

saving, and the corresponding result stored in the 1T-1R 

memory is returned. 

TCAMs are the main components of associative memories. 

In NVM-based TCAMs, values are stored on cells based on 

the NVMs resistance state (Low or High). During search 

mode, the input operands are compared with all pre-stored 

TCAM patterns and if the data is found, a charged Match Line 

(ML) interrupts the processor computation by using clock-

gating technique. In this paper we use 3T-1R cells as in [22] 

for TCAMs, which have been demonstrated to have 

advantages over previous cells [12, 26]. To reduce the 

effective load/capacitance of the ML, each cell is connected to 

it with a single junction, which results in a higher search speed 

and a lower energy consumption. Resistive 1T-1R memory 

consists of cells made by one memristor and one access 

transistor. Such cell is used to store the results of 

computations. The hit on the TCAM activates the 

corresponding line of the 1T-1R memory to retrieve the result 

of computation.  

Several associative memory applications require a TCAM 

with both large word size and high number of rows to store 

long keys and improve the hit-rate [9, 27]. However, having a 

TCAM with large size exacerbates some problems, described 

in the following. 

(i) Word size: A large word size decreases the stability of 

the TCAM because of the high leakage currents of cells 

connected to the match-line (ML). These leakage currents can 

result in wrong search operations [8, 9]. One solution is to 

split the TCAM to multiple shorter searches, which can be 

either sequential or parallel. Sequential access increases the 

search delay and degrades the average time that the processor 

can be clock-gated. On the other hand, a parallel search 

requires an OR gate to find the line corresponding to all partial 

TCAM matches. This results in energy and area overhead. 

(ii) Number of rows: A TCAM with a large number of 

rows requires big and power hungry input buffers to distribute 

the input signal to all rows. The delay introduced by big 

buffers prevents searching in the entire block on a single cycle 

and degrades energy efficiency.  

(iii) Search energy: For each search operation, resistive 

associative memory requires a complete precharging among 

all TCAM rows. The search operation is energy hungry 

because of the high number of charges and discharges. The 

search operation on a large TCAM limits the energy efficiency 

of using associative memory and their application.  



Our ReMAM architecture addresses the first two problems 

by adopting a multi-stage structure with sequential access. 

This allows to have shorter rows in consecutive stages, which 

enables having a higher number of rows on each stage. Also, 

we address the third problem by introducing selective row 

activation technique. Finally, we mitigate the delay associated 

with sequential access by adopting in-advance precharging. 

The following section will explain the details of ReMAM 

architecture and proposed technique. 

 

 

4. Proposed ReMAM 

4.1. ReMAM architecture 

This section describes the proposed ReMAM architecture 
and the details of the two techniques: selective row activation 
and in-advance precharging. Figure 1 shows the structure of 
ReMAM. It is composed by a multi-stage TCAM and a 1T-1R 
memory block.  

While standard associative memory has a single TCAM 

block, ReMAM splits it into m shorter stages. When the 

computing unit is performing a computation, the first N/m bits 

of each operand are searched on the first stage, where N is the 

size of the input. In case of a hit on some lines, the 

architecture employs selective row activation by sending 

EnL_1 signal to the next stage to enable (precharge) only the 

corresponding lines. Then, the architecture searches the 

following N/m bits of the input data on the second stage just 

on the selected rows. This procedure is repeated until the last 

stage. This technique gradually reduces the number of active 

rows from the 2nd to the mth stage. Reducing the number of 

precharges on active rows enables energy saving. After 

traversing all TCAM stages, if the pattern exists on the 

TCAM, one of the MLs in the mth stage will stay in high 

voltage state (VDD) and activate the Enl_m signal. A hit in the 

mth stage stops the computation by clock-gating technique. At 

the same time, this signal activates the corresponding row of 

1T-1R memory in order to read the pre-stored result of 

computation. 

Sequential row activation on the TCAM determines a large 

search delay, because each stage needs to wait for the 

following one to precharge before moving on. To considerably 

reduce such delay, we propose in-advance precharging 

technique. This technique precharges each row in a stage 

(row-driver activation) based on the hit of the second previous 

stage. For example, in a m-stage TCAM, when data is 

searched in the kth TCAM stage, the (k+1)th stage precharges 

the rows based on (k-1)th stage hits (2<k <m+1). Note that a 

ReMAM with any number of stages still has some delay due 

to the precharge of the first two stages. Indeed, the delay 

reduction given by in-advance precharging takes place from 

the third stage. However, these two initial precharging steps 

can be done quickly on a short word size TCAM, with 

negligible impact.   
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Figure 2. Example of searching “ABCD” string on 4-stage ReMAM (a) 

without and (b) with selective row activation and in-advance precharging 

technques.  

In the following we show an example to clarify the 

advantages of the proposed design. Figure 2 shows a 

comparison of a 8-row, 4-stage ReMAM in which selective 

row activation and in-advance precharging are respectively 

disabled (Figure 2.a) and enabled (Figure 2.b). The goal is to 

search for “A B C D” string in TCAM. Each digit can be 

stored on one stage. In the first case, the TCAM row activation 

does not depend on previous TCAM hits, and all stages are 
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Figure 1. Proposed ReMAM structure. 



precharged at the same time. The proposed ReMAM, instead, 

activates the rows based on the hit of previous stages. Based 

on our explanation, the row activation on the 3rd, 4th and 1T-

1R memory is done based on the hits of 1st, 2nd and 3rd stages 

respectively. The selective row activation significantly reduces 

the number of active rows, and consequently ReMAM energy 

consumption. At the same time, in-advance precharging 

guarantees a consistent delay reduction. 

 

4.2. ReMAM stages 
The number of TCAM stages has a major impact on the 

associative memory energy consumption. Indeed, there is a 

tradeoff between the number of stages and the energy 

consumption of the ReMAM. Splitting the TCAM increases 

the number of hit rows on the first stages and progressively 

reduces the number of active rows on the following stages and 

resistive memory. Moreover, it reduces the energy 

consumption of the first TCAM stages by shortening the word 

size.  

However, with a preliminary study we observed that in 

case of a 2-bit line in the first stage, the number of hits is high, 

which results in a large number of active rows in the following 

stages, thus a reduced opportunity for energy saving. To 

counteract this problem, we set a lower bound on the size of 

bitline on the first stage TCAM to 4-bit for any partitioned 

TCAM. Our evaluation revealed that having at least 4-bit lines 

in the first stage provides best results among other possible 

sizes, so we report only this case in the paper.  

Note that the application of the proposed low energy 

associative memory is not limited to GPU processing. Thanks 

to multi-stage search operation, ReMAM can be used for 

search engines, searching and sorting, image coding, pattern 

recognition, query processing and several machine learning 

based processing, as well as previous work on associative 

memory [28, 29]. In most of these applications, the goal is to 

search a long key containing several digits on TCAM. If the 

first digit is not available, there is no need to go further. For 

this reason, we consider ReMAM as a promising solution for a 

broad range of applications. 

 

5. Experimental Results  

5.1. Experimental setup and support framework 
We implemented the proposed ReMAM architecture on the 

AMD Southern Island GPU, Radeon HD 7970 device, which 

is one of the most recent GPU architectures. The benchmark 

applications have been adopted from AMD APP SDK v2.5 in 

OpenCL, to make it suitable for stream processing [30]. We 

run five popular OpenCL applications, to test the efficiency of 

ReMAM: Sobel, Robert, Sharpen, BlackScholes and 

DwtHaar1D. The first three are image processing benchmarks, 

while the last two are general purpose applications. This 

makes the evaluation more robust in the context of GPGPUs. 

We use Multi2sim to simulate the described device [31]. This 

is a cycle accurate CPU-GPU simulator of which we modified 

the kernel code to enable profiling and run-time simulation. 

We extracted the most frequent patterns for adder (ADD), 

multiplier (MUL), multiplier-accumulator (MAD) and SQRT 

FPU computations. To obtain energy and delay, the 6-stage 

balanced FPUs are designed using Synopsys Design  Compiler 

in 45-nm ASIC flow [32]. FPUs are optimized for power, 

based on measured delay of the TCAM in different sizes. 

In GPGPUs, the FPUs have a different number of input 

operands. The ADD and MUL accept two 32-bit, SQRT a 32-

bit and MAD three 32-bit input operands. Therefore, their 

related TCAMs need to have 64-bit, 32-bit and 96-bit word 

sizes respectively. The circuit level simulation of TCAM 

design has been performed on HSPICE simulator considering 

45-nm technology. For sizing, capacitors and resistors we used 

the experimental details of reference [22].  

We also present a framework which is compatible with 

OpenCL as a standard for parallel programming of 

heterogeneous systems. The execution flow of ReMAM has 

two main steps: design time profiling and run-time reuse. In 

profiling, we use an OpenCL kernel and a host code to train 

the associative memory values based on an input dataset. We 

used 100 random images from Caltech 101 computer vision 

[33] as input dataset for image processing applications (Sobel, 

Robert and Sharpen). For the remaining two applications, we 

test them on a sequence of input numbers with 100 different 

size. The training is done on 10% of the input dataset, 

extracted randomly. After that, the host code starts to save and 

rank the input patterns for each FPUs based on their frequency 

of occurrence. In this state, the AMD compute abstraction 

layer provides a runtime device driver library and allows host 

program to work with the stream cores in lowest level. The 

programming of the TCAMs is done at the software level by 

using the host code. Note that all TCAMs associated with 

instances of the same kind of FPUs are programmed 

concurrently with the same data.  

 

5.2. ReMAM and TCAM sizing 
A TCAM with a high number of rows improves the hit-rate 

and the average time that FPU can be clock-gated. In the 

proposed ReMAM architecture, the energy consumption has 

been decreased by utilizing selective row activation and in-

advance precharging techniques. Figure 4 compares the 

TCAM delay and search energy consumption for a single-

stage and for the proposed multi-stage TCAM in different 

sizes for the Sobel application. The search energy 

consumption of a conventional TCAM is application-

independent, because all lines are activated at each search. On 

the other hand, in the proposed multi-stage TCAM the number 

activated rows, and thus the energy consumption, depends on 

hit-rate and application type. In ReMAM, the energy 

consumption is lower than ReAM since it just consumes 

maximum energy on the first TCAM stage and the rest of the 

stages and resistive memory have fewer active rows. Such 

energy consumption decreases further if we split TCAM into 

more stages. Going from 8 to 15 stages increases the TCAM 

delay severely with only a small energy improvement. This 

happens because our design sets a lower bound on the first 

TCAM stage to 4-bit word size. At 64-row, TCAM splitting to 

2-stage, 4-stage and 8-stage achieves respectively 1.8X, 2.7X 

and 5.1X energy savings compared to single-stage TCAM. 

The delay overheads are respectively less than 0.1ns, 0.3ns 

and 0.5ns. 



 
Figure 4. Energy consumption of the proposed multi-stage and 

conventional single-stage TCAMs in different size.  

Our evaluation also shows that the energy ratio of the 

ReMAM to single-stage TCAM increases in large TCAM 

sizes. Indeed, this increases the hit rate by including a large 

number of undesired activations. This observation suggests 

that the proposed ReMAM is well-suited for implementation 

on large associative memories. In addition, in ReMAM the 

TCAM and resistive memory rows are activated based on the 

hit of the previous stages. Therefore, as Figure 4 shows, the 

ReMAM delay characteristic have a low difference with 

respect to conventional ReAM in large sizes. 

Figure 3 compares the normalized energy consumptions of 

GPGPU using the proposed ReMAM and the conventional 

ReAM. The FPU energy is calculated based on the measured 

delay obtained with each TCAM size. The GPGPU energy is 

normalized to the FPU energy consumption in each point. The 

results in  and Figure 3 indicate that there is a tradeoff 

between TCAM and FPU energy consumptions related to 

different TCAM size. Such tradeoff can be explained as 

follows. 

(i) FPU energy: large TCAMs result in higher hit-rate. 

Moreover, the hit-rate improvement is not linear with the 

TCAM size. For example, going from 2-row to 4-row TCAM 

has more impact on the hit-rate improvement than going from 

64-row to 128-row. This shows the impact of higher hit-rate 

on the effective FPU energy. The reason is that a higher hit-

rate increases the amount of time that FPU is in clock-gate 

mode. In addition, the FPU energy depends on the TCAM 

delay. The longer delay of larger TCAMs allows the Design 

Compiler to optimize the FPU energy consumption. Our 

results show that the FPU energy optimization continues until 

a TCAM with 1024-row (6.2ns TCAM delay).  

(ii) TCAM energy: a large size TCAM is a dominant 

contributor to the total energy consumption. As a result, the 

GPGPU using conventional ReAM has a minimum energy 

point with 8-row TCAM. Decreasing TCAM energy is an 

effective way to improve the total GPGPU energy 

consumption. This not only affects the TCAM energy, but also 

allows the system to use larger TCAMs with a higher hit-rate 

to decrease the effective FPU energy consumption. As Figure 

3 shows, using efficient ReMAM results in minimum GPGPU 

energy point taking place with larger TCAM size (16 or 32 

rows) compared to conventional ReAM. The GPGPU energy 

saving are 38.2% and 23.1% on average employing ReMAM 

and ReAM respectively with respect to FPU. 

 

5.3. Energy and TCAM stages 
Figure 5 shows the normalized GPGPU energy 

consumption in TCAMs with different number of stages. Each 

line in the graph is normalized to the FPU energy using single-

stage TCAM. In large size, splitting the TCAM increases the 

number of undesired hits on stages, and limits the opportunity 

for energy saving. However with a smaller size, the GPGPU 

energy is not sensitive to the TCAM partitioning. Therefore, 

as it is shown in Figure 5, it is preferable to split small size 

TCAMs into a high number of stages. However, high 

partitioning of a large TCAM, increases the number of 

undesired active rows and results in GPGPU energy 

degradation. In addition our evaluation indicates that in all 

applications the GPGPU using 64-row ReMAM has higher 

energy improvement respect to 4–row and 16-row ReMAM. 

This fact indicates that ReMAM is highly desirable for 

systems with large TCAM sizes. The results show that the 64-

row ReMAM decreases the energy consumption of GPGPU 

computation by 27.7%, 42.2% and 41.2% on 2-stage, 4-stage 

and 8-stage respectively, compared to utilizing conventional 

ReAM. 
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Figure 3. Normalized GPGPU energy consumption using ReMAM and conventional ReAM. 
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Figure 5. Normalized GPGPU energy consumption using ReMAM with different number of stages. 

  

6. Conclusion 
We proposed a novel low energy Resistive Multi-stage 

Associative Memory architecture named ReMAM, which 

splits the TCAM search to a sequence of shorter stages. The 

proposed architecture employs selective row activation and in-

advance precharging techniques to reduce energy 

consumption and mitigate the delay of sequential access. The 

search operation in the proposed ReMAM can be done with 

very low energy consumption depending on the number of 

TCAM stage and application type. Our experimental results on 

AMD Southern Island GPU show that ReMAM decreases the 

system energy consumption of GPGPU more than 38.2% with 

error-free computation. Finally, we show that ReMAM is 

particularly beneficial for systems with large size associative 

memory.  
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