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Abstract—The Internet of Things (IoT) has led to the emer-
gence of big data. Processing this amount of data poses a
challenge for current computing systems. PIM enables in-place
computation which reduces data movement, a major latency
bottleneck in conventional systems. In this paper, we propose
an in-memory implementation of fast and energy-efficient logic
(FELIX) which combines the functionality of PIM with memories.
To the best of authors’ knowledge, FELIX is the first PIM logic
to enable the single cycle NOR, NOT, NAND, minority, and OR
directly in crossbar memory. We exploit the voltage threshold-
based memristors to enable single cycle operations. It is a purely
in-memory execution which neither reads out data nor changes
sense amplifiers, while preserving data in-memory. We extend
these single cycle operations to implement more complex func-
tions like XOR and addition in memory with 2× lower latency
than the fastest published PIM technique. We also increase the
amount of in-memory parallelism in our design by segmenting
bitlines using switches. To evaluate the efficiency of our design
at the system level, we design a FELIX-based HyperDimensional
(HD) computing accelerator. Our evaluation shows that for all
applications tested using HD, FELIX provides on average 128.8×
speedup and 5,589.3× lower energy consumption as compared
to AMD GPU. FELIX HD also achieves on average 2.21× higher
energy efficiency, 1.86× speedup, and 1.68× less memory as
compared to the fastest PIM technique.

I. INTRODUCTION

The unprecedented increase in the number of interconnected
devices and smart systems has resulted in the concept of big
data. To process this data, it is either run on a multi-core
system or sent to cloud and run on large servers [1], [2].
Both of these involve large energy and latency overheads.
This is caused by the large amount of data movement between
processing units and memory storing the data, owing to limited
cache capacity and on-chip bandwidth [3], [4]. The processing
in-memory (PIM) tries to address this issue by processing part
of data in-place, eliminating the need to transfer all data to the
processing unit.

PIM has recently become an active area of research. Most
of it is driven by the emergence of new non-volatile memory
technologies, like memristors. The logic state of memristors
depends upon the resistance of the device, which is controlled
by the charge through it. They have fast switching speed, low
switching energy, and high scalability, making them suitable
for dense and fast PIM solutions [5], [6], [7], [8].

A number of recent publications have exploited memristors
to enable PIM [9], [10], [11], [12], [13], [14], [15]. Some
compute logic at the periphery of the memory by modifying
the memory sense amplifiers [16], [17]. They read the stored
data from the memory, use transistor based circuits to process
data, and store the results back to the memory. In these
designs, the amount of data that can be processed in parallel
is limited by the amount of sense circuitry present at the
periphery of the memory. Another work exploits the bipolar
switching behaviour of memristors to implement logic in-

memory [9], [10], [11], [18], [19], [20]. These designs depend
on application of voltage at various memory cells with no
change in the sense amplifiers. They are purely in-memory
operations which do not need to read out data but are restricted
by the limited functionality they can implement. For example,
MAGIC [9] only supports NOR directly in crossbar memory.
All other functions are implemented by repeated multiple NOR
cycles.

In this paper, we propose a purely in-memory implemen-
tation of fast and energy efficient logic (FELIX). Our design
extends the functionality of in-memory operations by imple-
menting single cycle NOR, NOT, NAND, minority (Min), and
OR directly in crossbar memory. We use these low latency
functions to implement functions like XOR and addition 2×
faster than MAGIC [9]. Our design further increases the
amount of in-memory parallelism by using in-block switches,
which segment the bitlines to make parallel operations in-
dependent of each other. We demonstrate the efficiency of
our design by developing a state-of-the-art accelerator for
HyperDimensional (HD) computing.

Our architecture fully processes HD encoding inside a
crossbar memory, without using any computing units. Our
evaluation shows that for all applications tested on HD, FELIX
provides on an average 128.8× speedup and 5589.3× lower
energy consumption as compared to GPU. FELIX HD also
achieves on an average 2.21× higher energy efficiency, 1.86×
speedup, and 1.68× lower memory requirement as compared
to the fastest PIM technique.

II. RELATED WORK & BACKGROUND

Processing in-memory (PIM) accelerates computation by
reducing the overhead of data movement and providing high
parallelism in some cases [4], [21]. Early PIM designs use
high performance CMOS logic alongside memory blocks.
Some of the designs added simple processing units at the
periphery of the main memory while others changed the sense
amplifiers to support basic functions in memory. However,
to implement more complex functions, dedicated CMOS-
based processing cores were added, making the manufacturing
process complicated and costly.

High density, low-power consumption, fast switching,
and CMOS-compatibility of emerging non-volatile memories
(NVMs), make them promising candidates for low-power main
memory. They have also been shown to have computing abili-
ties [5], [6], [7], [8]. Many logic families have been proposed
for computation inside memristive crossbar. Some of them
implement logic purely in memory such as stateful implication
logic [18], [22], and Memristor Aided loGIC (MAGIC) [9].
Logic execution with MAGIC is fully compatible with the
usual crossbar design, requires a lower number of voltages,
and supports NOR which can be used to implement any
Boolean logic. Also, it is non-destructive, unlike implication
logic based designs like IMPLY [18] which destroy one of978-1-4503-5950-4/18/11/$15.00 c©2018 IEEE
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Fig. 1. n-input NOR implementation in (a) a row and (b) a column.

the inputs. These properties of MAGIC make it a preferred
logic family for resistive crossbar memories. MAGIC uses
voltage threshold based memristors which switch whenever
the voltage difference between the two terminals, p and n
shown in Figure 1, exceeds a threshold. However, they don’t
fully utilize the threshold based switching of memristors and
only implement NOR in crossbar memory. All other functions
are derived using NOR, which results in unnecessary latency
overheads.

On the contrary, we propose FELIX in this work which
enables single cycle operation of many Boolean functions in
crossbar memory. This significantly reduces the latency of
in-memory logic execution while providing higher memory
utilization. The result is 2× faster execution of a whole
machine learning application as compared to MAGIC [11]. We
also improve parallelism in FELIX by using in-block switches
to increase the performance of PIM.

III. BASIC OPERATIONS IN FELIX

FELIX is a purely in-memory implementation of Boolean
logic. It executes NOR, NOT, Min, NAND, and OR in a single
cycle in crossbar memory. FELIX uses a variable voltage
based execution scheme, where the applied voltage defines
the operation to be performed. In addition, instead of relying
only on resetting behavior of memristors, we exploit it’s two-
way switching to extend the capabilities of PIM. When the
voltage Vpn > |von|, a memristor switches from a high resistive
state (ROFF ) to a low resistive state (RON). On the other hand,
when Vnp > vo f f , it switches from RON to ROFF . Here, |von|
and vo f f are the device dependent voltage thresholds and Vpn
is the voltage difference between terminals p and n.

Table I compares the execution of different boolean logic
functions in FELIX with previously proposed PIM techniques.
The latencies in the table and the discussion exclude the
first initialization cycle which is common to both designs.
The numbers in brackets represent the properties of the area
conservative designs [11]. It shows that FELIX performs either
the same as or significantly better than the fastest state-of-
the-art technique [9], [11]. For example, for addition, FELIX
is 2× faster, has 2× better energy efficiency, and 3× lower
memory size. In the following subsections, we outline the
implementation of basic boolean operations in FELIX.

A. Single-Cycle Operations
NOR: Figure 1 shows how NOR is implemented in

memristor-based crossbar array [9]. The output memristor is
initialized to RON in the beginning. To execute NOR in a
row, an execution voltage, V0, is applied at the p terminals
of the inputs and the p terminal of the output memristor is

TABLE I
COMPARISON OF FELIX WITH STATE-OF-THE-ART PIM TECHNIQUE

DESIGNED FOR HIGHEST PERFORMANCE.
Property Design NOR3 NAND3 Min3 OR3 Maj3 AND3 XOR2 1-bit ADD
Latency
(Cycles)

MAGIC 1 5 (6) 5 (6) 2 4 4 5 (7) 12 (14)
FELIX 1 1 1 1 2 2 2 6
Improv. 1× 5 (6)× 5 (6)× 2× 2× 2× 2.5 (3.5)× 2 (2.33)×

Memory
(# of Cells)

MAGIC 1 5 (4) 5 (4) 2 4 4 5 (3) 12 (6)
FELIX 1 1 1 1 2 2 1 4
Improv. 1× 5 (4)× 5 (4)× 2× 2× 2× 5 (3)× 3 (1.5)×

Energy
(fJ)

MAGIC 24.11 120.17 120.38 48.12 96.17 96.15 120.29 288.82
FELIX 24.11 49.24 41.64 9.53 65.65 73.26 34.97 135.60
Improv. 1× 2.44× 2.89× 5.05× 1.47× 1.31× 3.44× 2.13×

grounded, as shown in Figure 1a. When NOR is executed in
a column, the n terminals of the inputs are grounded while
V0 is applied to the n terminal of the output, as shown in
Figure 1b. The motive behind both the executions is to switch
the output memristor from RON to ROFF whenever the NOR
output is ‘0’. FELIX is as fast as MAGIC [9] for NOR.

NAND and Min: FELIX does not directly depend upon the
inputs but the voltage developed across the n and p terminals
of the output device. This enables it to implement minority and
NAND in memory. Consider the case of a 3-input NOR using
a V0 of 1V and vo f f of 0.5V. The voltage developed across
the output memristor is equal to 0V, 0.5V, 0.67V, and 0.75V
when the inputs are ‘000,’ ‘001,’ ‘011,’ and ‘111’ respectively.
Here, the output memristor switches in all cases except the
first one. Now, if V0 is changed to 0.75V, developed across
the output memristor changes to 0V, 0.38V, 0.5V, and 0.56V
when the inputs are ‘000,’ ‘001,’ ‘011,’ and ‘111’ respectively.
In this case, the output switches to ROFF only when there
are at least two ‘1’s in the input. The output is effectively
the 3-bit minority function (Min3). As V0 is further decreased
to 0.67V, output changes only when the inputs are ‘111.’ In
other words, the output is ‘0’ only when all the inputs are ‘1.’
This is equivalent to a 3-bit NAND operation. The above logic
can be extended to N-bit minority and NAND functions. The
execution voltage, V0, required to implement these functions
is given by Equation 1, where N is the number of inputs.

vo f f
RON
·
{

RON +
(

ROFF
N−(n+1)

)
||
(

RON
n+1

)}
<V0 <

vo f f
RON
·
{

RON +
(

ROFF
N−n

)
||
(

RON
n

)}
, (1a)( n+2

n+1

)
· vo f f <V0 <

( n+1
n

)
· vo f f , (1b)

The value of n is defined by the operation to be executed.
For Min, n = dN/2e and for NAND, n = N. Equation 1b is
an approximation of Equation 1a under the assumption that
ROFF >> RON .

Hence, in addition to NOR and NOT, FELIX supports
a single cycle MinN and NAND. In theory this technique
can be extended for any n. However, the non-availability
of different voltage levels challenges its practical feasibility
for large values of n. For example, FELIX requires a V0
of 0.58V to implement a 6-bit NAND. It changes to 0.57V
and 0.56V in case of a 7-bit and 8-bit NAND respectively.
It is difficult to reliably generate these different and closely
valued levels of voltages. Hence, to keep the implementations
practical, we restrict FELIX to 2-bit and 3-bit NAND and Min.

OR: FELIX reduces the latency of OR operation to one
cycle by exploiting the setting behavior of the memristor
device. As discussed in Section II, a device can be switched
from ROFF to RON by applying a voltage greater than the
threshold, |von|. On the other hand, since MAGIC relies just
on the resetting behavior of memristors, implementing OR in
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Fig. 2. Voltage division for FELIX OR. (a) Application of voltage for OR, (b)
output memristor remains ROFF when all the inputs are ROFF (red), and (c)
output memristor switches to RON when one or more inputs are RON (green).

crossbar memory using MAGIC involves two NOR cycles.
Figure 2 shows the voltages division for different possible
inputs. Ground and V0 terminals are opposite of those used for
MinN. When all the input and output memristors are ROFF ,
the voltage across the output memristor is much less than V0.
On the other hand, if one or more inputs are RON , the voltage
across the output is approximately V0. If V0 is greater than von,
then the output memristor switches to RON .

The above behavior is exploited to implement OR in mem-
ristive memory. The output memristor is first initialized to
ROFF . To execute OR in a row, the p terminals of the input
memristors are grounded while V0 is applied at the p terminal
of the output. In case of OR in a column, V0 is applied at
the n terminals of the inputs the n terminal of the output is
grounded (show p and n terminals in a figure). If the logical
’high’ and ’low’ states are represented by RON and ROFF
states of memristor, the result of OR operation corresponds
to ROFF when all the input bits are low and RON otherwise.
The execution voltage, V0, required to implement OR is given
by,
|von|

ROFF
·
{

ROFF +(RON) ||
(

ROFF
N−1

)}
<V0 <

|von|
ROFF

·
{

ROFF +
(

ROFF
N

)}
, (2a)(

1+ RON
ROFF

)
· |von|<V0 <

(N+1
N

)
· |von|, (2b)

where N is the number of inputs. Equation 2b is an approxima-
tion of Equation 2a under the assumption that ROFF >> RON .

B. Multi-Cycle Operations
The in-memory operations proposed in the above section

can be combined to extend the functionality of the memory.

Maj and AND: Majority (MajN) and AND can be
implemented by inverting MinN and NAND respectively.
This results in 2-cycle MajN and AND in FELIX in contrast
to four cycles in MAGIC.

XOR: XOR (⊕) can be expressed in terms of OR (+), AND
(.), and NAND ((.)′) as follows:

A⊕B = (A+B).(A.B)′ (3)

Figure 3 shows the in-memory implementation of Equation 3.
Instead of calculating OR and NAND separately and then
ANDing them, we first calculate OR and then use its output
cell to implement NAND. In this way, we eliminate separate
execution of AND operation. This logic just requires 2 FELIX
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Fig. 3. Stages in implementing 2-bit XOR using FELIX.

cycles and one additional memristor device, which also acts
as the output cell. In contrast, the state-of-the-art PIM
technique proposed in [11] uses 5 cycles and 5 memristors
for the fastest XOR implementation, while the most area
conservative approach takes 7 cycles and 3 memristors.
Hence, the proposed XOR implementation is both faster and
smaller.

Addition: FELIX implements addition by combining XOR
and MajN operations. A 1-bit adder can be represented by,

S = A⊕B⊕Cin, (4a)
Cout = A.B+B.C+C.A = Ma jN(A,B,Cin), (4b)

where A, B, and Cin are 1-bit inputs while S and Cout are the
generated sum and carry bits respectively. Here, S is imple-
mented as two serial in-memory XOR operations. Cout , on the
other hand, can be executed by inverting the output of MinN.
Hence, S takes a total of 4 cycles and 2 additional memristors,
while Cout needs 2 cycles and 2 additional memristors.

The previously proposed state-of-the-art processing in-
memory techniques also support addition within the crossbar
memory [11], [19]. These approaches break down an operation
into a series of NOR operations. A typical addition implemen-
tation requires 12 NOR operations, resulting in 12 MAGIC
NOR cycles [11] as compared to 6 in FELIX and 12 additional
memristors as compared to 4 in FELIX.

IV. PARALLELISM IN FELIX

In order to increase in-memory parallelism, we split the
array into smaller partitions such that the achievable paral-
lelism directly depends upon the number of partitions of the
memory block. These partitions are created by the transistor
switches which divide the bitlines into smaller segments.
This enables FELIX to independently implement multiple
operations simultaneously. Consider a memory array with a
64-bit wordline and capacity of 1024 words. Now, a bitwise
OR operation needs to be carried out between 10 pairs of
words and outputs be stored in the memory. All these steps
are independent of each other and can happen in parallel if the
memory supports it. FELIX can execute the same in a single
cycle if the memory has 10 or more partitions. In contrast, the
conventional design would execute it in 10 steps with each step
implementing 64 parallel single cycle OR operations between
a pair of words [11].

Figure 4 shows how FELIX behaves in a memory with
no partition when operations are parallelized across rows and
columns simultaneously. The currents from different opera-
tions interfere with each other, as shown by {Op1 Op3} and
{Op2 Op4} in Figure 4. It effectively results in a single
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operation with more inputs and multiple copies of output.
Transistors physically split the bitlines while keeping them
logically the same. Figure 5 shows how FELIX behaves when
a memory is divided into two partitions using transistors. The
transistors, when switched off, prevent the currents belonging
to different operations from merging. This enables FELIX to
parallelize operations in rows and columns simultaneously.

Ideally, we would like to have as many partitions as pos-
sible. However, increasing the number of partitions comes
with additional overhead. First, more partitions lead to reduced
memory utilization. FELIX requires some additional devices
or processing elements for executing logic. These elements
store the intermediate states involved in achieving the final
output. Since each partition needs its own processing elements,
increasing the number of partitions linearly increases the
devices required. These processing elements cannot be used
for storing logic because they are used by FELIX to implement
every operation. In case of a fixed memory size, increasing the
number of processing elements directly reduces the amount of
memory usable for storage. Second, more partitions require
more number of transistors to segment the bitlines, leading an
increased area overhead. Figure 6 shows the change in memory
utilization and area overhead for a 1024×64 memory block as
the number of partitions increases.

V. HYPERDIMENSIONAL COMPUTING

A. HD Classification Overview
Brain-inspired HyperDimensional (HD) computing is a

computing paradigm which works based on understanding the
fact that brains compute with patterns of neural activity [23],
where such neural activity patterns can only be modeled
with points of high-dimensional space (e.g., D=10,000). Clas-
sification is one of the most important supervised learning

Fig. 6. Change in memory utilization and area overhead due to transistors
with increase in parallelism in FELIX.

algorithms. Figure 7a shows the overview of HD computing
architecture for a classification problem consisting of an
encoder module and an associative memory. The goal of the
encoder is to map an input data to a single hypervector with
D dimensions and then combine these hypervectors for all
of the inputs in a class to generate a unique hypervector
representing each class [24], [25], [26]. Each class hypervector
is a long vector with D dimension, where each dimension
can have binary (0, 1) elements. Associative memory stores
the trained hypervectors for all classes. In test mode, HD
classifies an unknown input by encoding the input image
to a hypervector using the same encoder used for training.
The query hypervector has binary elements and the same D
dimension as the class hypervectors. Next, associative memory
checks the similarity of the query hypervector to all classes
and classifies it to a class which has the closest similarity.

B. Encoding Module

Figure 7b shows the encoding module in HD computing.
Let’s assume each data point in original space can be repre-
sented using a features vector {v1, . . . ,vn. The goal of encoding
module is to map this feature vector to high-dimensional space
while keeping all its information in a high-dimensional vector.
Each feature vector stores two types of information: the value
of signal and the index of each feature.

Feature values: In order to consider the impact of feature
values, our design first identifies the minimum and maximum
value that signal can take in all dimensions {vmin&vmax}. Then,
it quantizes the feature values into Q levels were vmin and vmax
are the first and last levels respectively. HD assigns a single
hypervector with D dimension to each of the quantized levels
L = {L1,L2, . . . ,LQ} where Li ∈ {0,1}D and L1 and L−Q
correspond to the vmin and vmax respectively. The generation of
the level hypervector is similar to work [24], such that the level
hypervectors have similar values if the corresponding original
data are closer, while L1 and LQ will be nearly orthogonal.

Feature index: To specify the impact of each feature
index on encoded hypervector, HD generates a set of random
identification hypervector {ID1, . . . , IDn}, where IDi ∈ {0,1}D

represents a hypervector corresponding to ith feature index.
Due to random generation, the ID hypervectors are semi-
orthogonal, meaning that:

δ (IDi, ID j)' D/2 for i 6= j

Depending on feature values, each feature maps to one
of the Q generated hypervectors. Hypervectors are combined
together using element-wise XOR of the level and ID hyper-
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Fig. 7. (a) The overview of HD computing architecture for classification task. (b) The encoding module of HD computing mapping a feature vector with n
elements to high dimensional space using pre-generated identity and level hypervectors.

vector, and then summing the resulting hypervectors over all
features:

I = L1⊕ ID1 + L2⊕ ID2 + · · ·+ Ln⊕ IDn f ∈ [1,m]

where Li is the (binary) hypervector corresponding to the i-th
feature of vector v.

C. FELIX-Based HD Acceleration

In this section, we discuss how HD is mapped to memory
and its acceleration using FELIX. The HD efficiency depends
on the amount of parallelism which we can apply to encoding
module. The most area efficient method is to store all ID and
level hypervectors in a single memory partition and perform
XOR operation between each ID and corresponding level in
series. This method serially processes the features and its
performance is directly related to the number of features. Our
design parallelizes the encoding module by partitioning the
memory block.

Let us assume that a feature vector has n elements and Q
corresponding Ls (Levels). In HD, this results in n IDs. In total
we have n + Q vectors with D=10,000 dimensions. All these
vectors are stored in a memory block. Each vector is mapped to
a row of the memory, where each row has a capacity of 10,000
bits as shown in Figure 8. In HD encoding, as discussed in
the previous section, first each ID is XORed with one of the
Ls depending upon the values of the feature. The results of
the XOR operations are then added together dimensionwise.
We map all these operations in FELIX-enabled memory.

We perform n FELIX XORs (one for each ID) and generate
n outputs. For the first n iterations, we select one ID and XOR
it with one of the Ls in every iteration. For a pair of ID and L,
FELIX XOR can be computed in parallel for all dimensions
since all dimensions of a vector are stored in the same row.
Each XOR operation requires one additional memory cell to
store the output of the result. This requires 10,000 additional
cells, equivalent to a row of the memory, to store the output.
We then count the number of 1s in all XOR results for each
dimension. We execute this by FELIX addition. In order to
perform addition for all the dimensions in parallel, we store
the output of addition vertically in a column, instead of a row,
as shown in Figure 8. We add n elements serially, three bits at
a time. If X1, X2, ... Xn are the vectors to be added together,
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Fig. 8. Organization of data in FELIX-enabled HD accelerator.

we first add X1, X2, and X3 to generate S1 and C1. We then add
X4, X5, and {C1, S1} to generate S2 and C2, and so on till we
have added all XOR results. The addition of n 1-bit elements
results in an output with p = dlog2ne bits, requiring p rows to
store the output of addition. In addition, FELIX also requires
p+ 1 rows to store the intermediate results of addition like
C1,S1,S2,C2, etc.

As described above, we add a maximum of three XOR
results at a time. Hence, instead of calculating all XOR results
first and then adding them, we calculate them two at a time,
except the first step when we calculate three, and add them.
This reduces the memory requirement for XOR results from n
rows to just 3. Apart from the 3 rows for XOR results and p
rows required for the addition results, we require p+1 rows
to store the intermediate addition results and 2 rows for the
intermediate FELIX stages, as shown in Figure 8.

VI. RESULTS

A. Experimental Setup
We compare FELIX performance and energy efficiency with

AMD Radeon R9 390 GPU with 8GB memory and Intel
i7 7600 CPU with 16GB memory. For the measurement of
system and processor power, we used Hioki 3334 power meter
and AMD CodeXL [27]. All software support for application
level evaluation including training and testing of HD model
have been performed in CPU using C++ implementation. For



TABLE II
THE ENERGY EFFICIENCY, SPEEDUP AND MEMORY EFFICIENCY OF FELIX

AS COMPARED TO MAGIC RUNNING DIFFERENT APPLICATIONS.

ISOLET FACE UCIHAR PAMPA
Energy Improv. 2.20× 2.20× 2.21× 2.26×

Speedup 1.86× 1.86× 1.88× 1.87×
Memory Efficiency 1.61× 1.61× 1.61× 1.82×

hardware level evaluation we have designed a cycle accurate
simulator which emulates the HD computing functionality at
inference. Our simulator pre-store the randomly genrated level
and index hypervectors in memory and performs the encoding
operations in-memory using the controller signals.

We extract the circuit level characteristic of FELIX per-
forming basic operations and give them as input to simulator.
Performance and energy consumption are obtained from circuit
level simulations for a 45nm CMOS process technology using
Cadence Virtuoso. We use VTEAM memristor model [28] for
our memory design simulation with RON and ROFF of 10kΩ

and 10MΩ respectively.

B. Workloads
We evaluate the efficiency of the proposed FELIX on four

popular classification applications, as listed below:
Speech Recognition (ISOLET): The goal is to recognize
voice audio of the 26 letters of the English alphabet. The
training and testing datasets are taken from Isolet dataset [29].
This dataset consists of 150 subjects speaking each letter of
the alphabet twice. The speakers are grouped into sets of
30 speakers. The training of hypervectors is performed on
ISOLET 1, 2, 3, 4, and tested on ISOLET 5.
Face Recognition (FACE): We exploit Caltech dataset
of 10,000 web faces [30]. Negative training images, i.e.,
non-face images, are selected from CIFAR-100 and Pascal
VOS 2012 datasets [31]. We select 10% of images for the
testing dataset which are completely separated from the
training dataset. For the Histogram of Oriented Gradients
(HOG) feature extraction, we divide a 32x32 image to (i)
2x2 regions for three color channels and (ii) 8x8 regions for
gray-scale.
Activity Recognition (UCIHAR) [32]: The dataset includes
signals collected from motion sensors for 8 subjects
performing 19 different activities. The objective is to
recognize the class of human activities.
Physical Activity Monitoring (PAMPA) [33]: This dataset
includes logs of 8 users and three 3D accelerometers
positioned on arm, chest and ankle. They were collected
over different human activities such as lying, walking and,
ascending stairs, and each of them was corresponded to an
activity ID. The goal is to recognize 12 different activities.

C. HD Results
Here we compare the efficiency of HD computing with

D=10,000 for three different platforms: CPU, GPU, proposed
in-memory FELIX architecture and MAGIC. Table II com-
pares the energy efficiency, speedup and memory efficiency
of FELIX with MAGIC [11] while running different HD
classification applications. The memory efficiency is defined as
the number of processing cells required to execute in-memory
operations. For a fair comparison, we use the proposed ar-
chitecture to evaluate both FELIX and MAGIC. The results
show that FELIX HD can achieve on an average 2.21× higher
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Fig. 9. Energy consumption and execution time of the baseline HD on CPU,
GPU, and the proposed FELIX-based architecture.
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Fig. 10. Impact of HD dimension reduction on the applications classification
accuracy.

energy efficiency, 1.86× speedup, and 1.68× lower memory
requirement as compared to MAGIC.

Figure 9 shows the energy consumption and execution time
of HD for different application on all platforms. Our evaluation
shows that for all tested applications, FELIX can provide
on average 978.7× and 128.8× speedup and 14,960.3× and
5,589.3× lower energy consumption as compared to the CPU
and GPU respectively. Here, we reported the result for FELIX
with single memory partition. The higher efficiency of the
FELIX comes from (i) memory compatible operations of HD
which enables FELIX to parallelize the operations in different
dimensions (ii) lower data movement and higher locality of
the data in-memory for FELIX computation. As we can see
in results, the energy and execution time of each application
depends on the number of features. Applications with large
number of features require more resources for computation.

D. FELIX Efficiency-Accuracy Trade-off
HD computing works based on the pattern of neural ac-

tivity which are in high-dimensional space. In theory, the
dimensional of the hypervector should be large enough (e.g.,
D = 10,000) to ensure the randomly generated base hypervec-
tors are nearly orthogonal. However, HD computing shows
robustness to scaling the hypervector dimensions. Figure 10
shows the HD accuracy when the hypervector dimension
scales from 2000 to 10,000. The result shows that for all
applications the HD can provide the same accuracy as 10,000
when the hypervector dimension scales to 8000. In addition,
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Fig. 11. Energy consumption and memory requirement of FELIX running
HD in different dimensions.

reducing the hypervector dimension to 2000, HD can provide
on average 2.3% lower accuracy as compared to baseline HD
with full 10,000 dimensions.

Our design exploit the robustness of HD to dimension-
ality in order to reduce the computation cost. Figure 11
shows the energy consumption and memory requirement of
HD computing running in-memory architecture. The memory
requirement includes the memory requirement to store the base
hypervectors and intermediate results during the computation.
Our evaluation shows that reducing the hypervector dimension
reduces FELIX energy consumption and memory size. This
efficiency comes from the less number of class elements
and operations that HD needs to store and process in lower
dimension. Our result shows that FELIX memory requirement
decreases linearly with the hypervector dimensions. For ex-
ample, HD in D=2000 dimensions consume 76% lower en-
ergy consumption, and required 80% smaller memory size as
compared to baseline HD with full dimensions. Note that the
execution time of FELIX does not change with the hypervector
dimensions. In fact, FELIX is designed to perform bit parallel
operations where all computations can be parallelized through
different dimensions.

There is a trade-off between the accuracy and efficiency
when the hypervector dimension reduces. The results are
relative to FELIX architecture running the baseline HD with
D = 10,000 dimensions. The quality loss, ∆E, is defined
as the difference between the HD classification accuracy in
low dimension and baseline HD. When our design ensures
0.5% quality loss (∆E = 0.5%), the FELIX can provide 25%
energy efficiency and memory improvement as compared to
the baseline HD model. Similarly, ensuring quality loss of less
than 1% (2%), FELIX energy and memory efficiency further
improve by 65% and 70% receptively.

VII. CONCLUSION

In this paper, we proposed an in-memory implementation
of fast and energy efficient logic. Our design extends the
functionality of in-memory operations by implementing many
single cycle operations directly in crossbar memory. We use
these low latency functions to implement more complex

functions efficiently. Our design further increases the amount
of in-memory parallelism by using in-block switches, which
segment the bitlines to make parallel operations independent
of each other. We demonstrate the efficiency of our design by
developing a state-of-the-art accelerator for HD computing.
Our evaluation shows that for all tested applications, FELIX
can provide on average 128.8× speedup and 5,589.3× lower
energy consumption as compared to GPU.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, and
also NSF grants #1730158 and #1527034.

REFERENCES

[1] C. Perera et al., “Context aware computing for the internet of things: A survey,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[2] J. Gubbi et al., “Internet of things (IoT): A vision, architectural elements, and future
directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[3] R. Balasubramonian et al., “Near-data processing: Insights from a micro-46 work-
shop,” Microarchitecture, vol. 34, no. 4, pp. 36–42, 2014.

[4] G. Loh et al., “A processing-in-memory taxonomy and a case for studying fixed-
function pim,” in WoNDP, 2013.

[5] Q. Guo et al., “Ac-dimm: associative computing with stt-mram,” in ISCA, vol. 41,
pp. 189–200, ACM, 2013.

[6] Q. Guo et al., “A resistive tcam accelerator for data-intensive computing,” in Microar-
chitecture, pp. 339–350, ACM, 2011.

[7] M. Imani et al., “Acam: Approximate computing based on adaptive associative
memory with online learning,” in IEEE/ACM ISLPED, pp. 162–167, 2016.

[8] L. Yavits et al., “Resistive associative processor,” IEEE Computer Architecture
Letters, vol. 14, no. 2, pp. 148–151, 2015.

[9] S. Kvatinsky et al., “MAGIC – memristor-aided logic,” TCAS II, vol. 61, no. 11,
pp. 895–899, 2014.

[10] A. Siemon et al., “A complementary resistive switch-based crossbar array adder,”
JETCAS, vol. 5, no. 1, pp. 64–74, 2015.

[11] N. Talati et al., “Logic design within memristive memories using memristor-aided
logic (magic),” IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650,
2016.

[12] M. Imani et al., “Genpim: Generalized processing in-memory to accelerate data
intensive applications,” in DATE, IEEE, 2018.

[13] M. Imani et al., “Efficient query processing in crossbar memory,” in ISLPED, pp. 1–6,
IEEE, 2017.

[14] M. Imani et al., “Nvquery: Efficient query processing in non-volatile memory,” IEEE
TCAD, 2018.

[15] M. Imani et al., “Rapidnn: In-memory deep neural network acceleration framework,”
arXiv preprint arXiv:1806.05794, 2018.

[16] S. Li et al., “Pinatubo: a processing-in-memory architecture for bulk bitwise opera-
tions in emerging non-volatile memories,” in DAC, p. 173, ACM, 2016.

[17] M. Imani et al., “Mpim: Multi-purpose in-memory processing using configurable
resistive memory,” in IEEE ASP-DAC, pp. 757–763, IEEE, 2017.

[18] S. Kvatinsky et al., “Memristor-based material implication (IMPLY) logic: design
principles and methodologies,” TVLSI, vol. 22, no. 10, pp. 2054–2066, 2014.

[19] M. Imani et al., “Ultra-efficient processing in-memory for data intensive applica-
tions,” in Proceedings of the 54th Annual Design Automation Conference 2017, p. 6,
ACM, 2017.

[20] A. Haj-Ali et al., “Efficient algorithms for in-memory fixed point multiplication using
magic,” in Circuits and Systems (ISCAS), 2018 IEEE International Symposium on,
pp. 1–5, IEEE, 2018.

[21] A. M. Aly et al., “M3: Stream processing on main-memory mapreduce,” in ICDE,
pp. 1253–1256, IEEE, 2012.

[22] J. Borghetti et al., “Memristive switches enable stateful logic operations via material
implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[23] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Compu-
tation, vol. 1, no. 2, pp. 139–159, 2009.

[24] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech recogni-
tion,” in ICRC, pp. 1–6, IEEE, 2017.

[25] M. Imani et al., “Low-power sparse hyperdimensional encoder for language recogni-
tion,” IEEE Design & Test, vol. 34, no. 6, pp. 94–101, 2017.

[26] M. Imani et al., “Hierarchical hyperdimensional computing for energy efficient
classification,” in DAC, p. 108, ACM, 2018.

[27] “Amd.” http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/.
[28] S. Kvatinsky et al., “Vteam: a general model for voltage-controlled memristors,”

TCAS II, vol. 62, no. 8, pp. 786–790, 2015.
[29] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[30] G. Griffin et al., “Caltech-256 object category dataset,” 2007.
[31] M. Everingham et al., “The pascal visual object classes challenge: A retrospective,”

IJCV, vol. 111, no. 1, pp. 98–136, 2015.
[32] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+

and+Sports+Activities.
[33] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset for physical ac-

tivity monitoring,” in Proceedings of the 5th International Conference on PErvasive
Technologies Related to Assistive Environments, p. 40, ACM, 2012.


