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Abstract—Memory-based computing using associative memory is a promising way to reduce the energy consumption of 

important classes of streaming applications by avoiding redundant computations. A set of frequent patterns that represent basic 

functions are pre-stored in Ternary Content Addressable Memory (TCAM) and reused. The primary limitation to using associative 

memory in modern parallel processors is the large search energy required by TCAMs. In TCAMs, all rows that match, except hit 

rows, precharge and discharge for every search operation, resulting in high energy consumption. In this paper, we propose a new 

Multiple-Access Single-Charge (MASC) TCAM architecture which is capable of searching TCAM contents multiple times with only 

a single precharge cycle. In contrast to previous designs, the MASC TCAM keeps the match-line voltage of all miss-rows high 

and uses their charge for the next search operation, while only the hit rows discharge. We use periodic refresh to control the 

accuracy of the search. We also implement a new type of approximate associative memory by setting longer refresh times for 

MASC TCAMs, which yields search results within 1-2 bit Hamming distances of the exact value. To further decrease the energy 

consumption of MASC TCAM and reduce the area, we implement MASC with crossbar TCAMs. Our evaluation on AMD Southern 

Island GPU shows that using MASC (crossbar MASC) associative memory can improve the average floating point units energy 

efficiency by 33.4%, 38.1%, and 36.7% (37.7%, 42.6%, and 43.1%) for exact matching, selective 1-HD and 2-HD approximations 

respectively, providing an acceptable quality of service (PSNR>30dB and average relative error<10%). This shows that MASC 

(crossbar MASC) can achieve 1.77X (1.93X) higher energy savings as compared to the state of the art implementation of GPGPU 

that uses voltage overscaling on TCAM. 

Index Terms—Approximate computing, Ternary content addressable memory, Associative memory, Non-volatile memory, GPUs  

——————————      —————————— 

1 INTRODUCTION 

he massive computation needs of big data requires ef-

ficient parallel processors. There is a significant 

amount of redundant data when processing streaming ap-

plications [1], [2]. Associative memory was introduced to 

exploit this observation and decrease the number of redun-

dant computations [3], [4], [5], [6],  [7], [8], [9]. In hardware, 

associative memories are implemented as look up tables 

using ternary content addressable memories (TCAMs) [4], 

[5]. However, TCAMs based on CMOS technology have 

low density and high energy consumption compared to 

SRAM [10]. This energy limits the application of TCAMs 

to classification [11] and IP look-up [12]. Voltage overscal-

ing (VOS) has been used on CMOS-based TCAMs to re-

duce the energy consumption [13], [14]. However, this in-

creases the system error-rate due to process variations and 

timing errors. 

Non-volatile memories (NVMs) present a new oppor-

tunity for efficient memory-based computation using low 

energy TCAMs [15], [16], [17]. Resistive RAM (ReRAM) 

and Spin Torque Transfer RAM (STT-RAM) are two types 

of fast and dense non-volatile memories based on memris-

tor and magnetic tunneling junction (MTJ) devices [18],  

[19]. Previous work has used NVMs to design fast and en-

ergy efficient TCAMs. However, the energy consumption 

of NVM-based TCAMs is still large because of the high 

number of charges and discharges in TCAM lines for each 

search operation. To further reduce NVM-based energy 

consumption, VOS has been applied on memristive TCAM 

while accepting results within 1-2 bits Hamming Distance 

(HD) between input and pre-stored TCAM patterns [6]. 

This aggressive voltage relaxation on the full TCAM bitline 

limits the TCAM size and degrades the computation qual-

ity of service below the acceptable range. 

In this paper we propose an ultra-low energy multi-ac-

cess single-cycle TCAM (MASC TCAM) which improves 

the energy consumption of the TCAM by performing multi-

ple search operations after only a single precharging cycle. 

In conventional TCAMs, the match-lines (MLs) of all TCAM 

rows precharge to VDD voltage. During the search opera-

tion, all MLs, except the hit rows (if any) discharge. As a re-

sult, TCAM consumes a lot of energy independently of a hit 

or a miss. In contrast, MASC decreases the ML switching ac-

tivity by limiting discharging only to the hit row. Conse-

quently, majority of the miss rows of the TCAM retain their 

charge after the search operation for more search cycles 
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without the need to precharge each time. The proposed 

MASC design is further split into several short word-size 

blocks so that the search can be performed in parallel. Each 

partial MASC TCAM uses an encoding scheme to limit the 

number of low resistance memristors to one in each block. 

When an input arrives, it discharges ML (match) just in case 

that it activates a low resistance cell. In all other cases, the 

ML stay charge and we can use that for multiple search op-

erations.  

Instead of using voltage overscaling to decrease TCAM 

energy consumption, the MASC TCAM architecture varies 

the period of precharging cycles on selective TCAM blocks 

to decrease the energy and control the computational er-

ror. The level of approximation is defined by the size of the 

hamming distance in each partial block.  It is controlled by 

changing when precharging occurs. In addition, our de-

sign applys approximation starting from the least signifi-

cant blocks of MASC which allows the system to balance 

TCAM energy savings and computational quality of ser-

vice as a function of the running application. We reduce 

area overhead by using crossbar TCAM with no access 

transistors. Our evaluations on AMD Southern Island GPU 

architecture using eight OpenCL applications shows that 

using MASC (crossbar MASC) improve the average float-

ing point units energy efficiency by 33.4%, 38.1%, and 

36.7% (37.7%, 42.6%, and 43.1%) for exact matching, 1-HD 

and 2-HD approximation with acceptable quality of ser-

vice. GPGPU using MASC (crossbar MASC), achieves 

1.77X (1.93X) higher energy saving as compared to state of 

the art design of the GPGPU with voltage overscaled ap-

proximate TCAM. Considering both integers and floating 

point units indicates that the MASC (corssbar MASC) can 

improve the overall GPGPU computation energy by 34.7% 

(39.1%) on average delivering acceptable quality of service.  

The rest of the paper is organized as follows: Section 2 

discusses the related work. Section 3 describes the archi-

tecture and challenges of resistive associative memory. The 

design of the proposed MASC TCAM is described in Sec-

tion 4. Section 5 discusses experimental results and Section 

6 concludes the paper. 

2 RELATED WORK 

Associative memory in the form of a look-up table has 

been used with parallel streaming processors to avoid do-

ing redundant computations [3], [4], [5], [6]. In hardware, 

associative memories are implemented using TCAM 

blocks. CMOS-based TCAMs consist of two SRAM cells 

but their cost per bit is 8X more than SRAM [10]. High den-

sity and low energy consumption of NVMs such as Re-

RAM and STT-RAM improve the energy efficiency of 

memory based computation. ReRAMs have comparable 

read operation to SRAMs, but have limited endurance (106-

107 write operation), which degrades their lifetime [18]. On 

the other hand, STT-RAMs have fast reads as well as high 

endurance (>1015). However, the bidirectional write cur-

rent and low ON/OFF ratio (~2) increases the area of the 

MTJ-based TCAM with respect to ReRAM-based TCAM 

cells [20], [21]. High endurance is necessary for TCAMs 

since they must be periodically updated. Our design ad-

dresses the endurance issue by limiting the write stress to 

only the start of kernel execution. 

Several previous works have used NVMs to design sta-

ble and efficient TCAMs [15], [22], [21], [23]. Li et al. [15] 

designed a 1Mb energy efficient 2T-2R TCAM which is 10X 

smaller than SRAM-based TCAM. Another 3T-1R TCAM 

structure has been introduced in [22], which can search the 

entire CAM array in less than 1ns with very low energy 

consumption. An efficient 2Kb 4T-2MTJ based TCAM cell 

is proposed in [23]. This cell is for standby-power-free 

TCAM and has 86% area reduction respect to SRAM-based 

TCAM. Hanyu, et al. in [21] introduced 5T-4MTJ TCAM 

cell which searches input data on cell complementary with 

very high sense margin. However, the energy consump-

tion of NVM-based TCAMs is still high because of high 

number of charge and discharge cycles for each search op-

eration [14], [6]. Work in  [24] showed that using large tem-

poral memory for computation reuse is not efficient in 

CMOS, hence they combined both temporal and spatial re-

use to get a high hit rate. Approximate TCAM using volt-

age overscaling is one way to decrease the search energy 

consumption of associative memories [6]. To improve the 

computation accuracy due to aggressive voltage overscal-

ing, Imani et al. applied approximation selectively on asso-

ciative memory to limit hamming distances to the least sig-

nificant bits [25]. To increase the hit rate, wok in [26] pro-

posed an approximate associative memory which can 

adaptively update CAM values using learning algorithm.  

In contrast to previous efforts, we design a new MASC 

which can perform multiple search operations within a sin-

gle precharging cycle. In MASC during a search only the 

match lines discharge while all the missed rows stay 

charged. The proposed design introduces selective hit line 

precharging and long precharging refresh to improve the 

search energy consumption of error-free MASC.  Selective 

MASC block approximation balances processor energy 

consumption and quality of service using multiple pre-

charging periods as a function of the running application.  

3 BACKGROUND 

3.1. Memristive devices 

Resistive memory has shown a great potential to be used 

as high performance NVMs [27]. To enable fast switching, 

ReRAMs use CMOS-based access transistors. General 

structure of memristor is based on metal/oxide/metal. 

Two metal layer (e.g. Pt) sandwich an oxide layer based on 

Ta, Ti and HF [28] , [29] , [30]. The metal/diode connection 

usually shows the Ohmic behavior (shown in Fig. 1). The 

data is prestored based on the memristor resistance state. 
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The device turns ON by applying negative bias and is 

turned OFF by applying positive voltage across the device 

[28]. Read applys a small voltage across the BL and SL 

nodes and reads the data with a sense amplifier.  
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Fig. 1. Working mechanism of ReRAM structure 

Crossbar memory is an access-free transistor memory ar-

chitecture, which can be implemented purely by memris-

tive devices. This memory achieves significantly low en-

ergy and high scalability, while occupying negligible area 

[31], [32]. The area of crossbar resistive memory is 4F2/n, 

where F is the minimum feature size and the n is the num-

ber of resistive layers in 3 dimensional space. However, 

since the cell is an access-free transistor, it can be imple-

mented at the top of the chip. Sneak current is one of the 

main problem of crossbar resistive memories. This current 

injects through the ON devices. Various diode-based 

memristive devices have been proposed to address this un-

desirable current in crossbar memories [33]. Complemen-

tary resistive switching (CRS) is an effective technique to 

address the sneak current problem. Using Pd/Ta2O5-

x/TaOy/Pd structure for complementary switching pro-

vides high endurance, high OFF resistance (~100GΩ) and 

switching speed of sub 1-ns [32]. In this memory device, 

switching is the result of changing the number of oxygen 

connections in tantalum layers by applying voltage across 

the device.  

3.2 Resistive Associative Memory   

Resistive associative memory consists of TCAM and 

resistive memory (1T-1R memory). In GPUs, associative 

memories are implemented alongside each FPU execution 

unit. The frequent input patterns and the related outputs 

are pre-stored in TCAM and resistive memory respectively 

(See Fig. 2). Any hit in the TCAM block stops the FPU exe-

cution by clock-gating the processor computation. This sig-

nal also activates the corresponding line of resistive 

memory to retrieve the precomputed result. The multi-

plexer (MUX block) places this result on the output bus. 

Associative memory is designed to perform the search op-

eration in a single cycle, same as the execution time of each 

FPU stage. A hit on the TCAM block stops the computation 

of the rest of FPU stages.  

Low energy consumption of the NVM-based associative 

memory enables application of these memories to query 

processing [34], search engine [35], text processing [36], im-

age processing [37], pattern recognition [37], data mining 

[38] and image coding [39]. Several of these applications 

need large TCAMs with respect to word-size and number 

of rows to cover a variety of input operands. Designing 

large TCAMs has following challenges: 

 Due to finite ON/OFF resistance ratio of NVMs in 

TCAM structure, a reliable search operation can oc-

cur on TCAMs with short word sizes. Large word 

sizes increase the leakage current of TCAM lines so 

that a hit may be incorrectly considered a miss. The 

effect of process variations makes the TCAM more 

sensitive to word sizes. 

 A TCAM with many rows requires a large input 

buffer block to distribute the input signals among all 

the rows. Larger buffer sizes worsen search delay 

and energy consumption of TCAM. 

 The primary factor that limits the number of TCAM 

rows and word size is the TCAM search energy. A 

large TCAM consumes a lot of energy which re-

duces the energy efficiency of the computation. 

Higher hit rate of a larger TCAM increases the per-

centage of the time that the processor clock gated, 

thus improving the energy efficiency. 
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Fig. 2. Integration of associative memory with FPU execution unit  
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Techniques that reduce the energy consumption of as-

sociative memories use larger TCAM sizes to improve the 

TCAM hit rate and FPU energy efficiency. Approximations 

can be used to decrease the energy consumption of associ-

ative memory [6, 40]. These techniques apply VOS on as-

sociative memory to reduce the search energy consump-

tion by accepting 1-2 bits hamming distance between input 

operand and prestored values in TCAM. In approximate 

associative memory mismatches can occur in any TCAM 

rows. All rows do not have the same impact on the result 

of computation. For example, a mismatch in the first set of 

TCAM rows usually has a larger impact on the computa-

tion accuracy as compared to a mismatch in the last rows 

because the first set of TCAM rows prestore operands with 

higher probability of hit. Therefore, aggressive voltage re-

laxation on entire TCAM block can result in high output 

error rates. For example, our preliminary results show that 

for Sobel and Shift applications running on approximate 

TCAM larger than 16-rows have an unacceptable quality 

of service. This limits the application of the associative 

memory to error-tolerant applications. Approximate 

TCAM with a larger number of rows increase the number 

of inexact matches and degrade the computational accu-

racy. This limits the size of a TCAM block fewer rows 

which reduces the intended benefits. 

We explore design techniques that can enable large 

search energy savings with controllable quality of service. 

Our proposed design allows multiple search operations on 

a TCAM block with a single precharge. It implements se-

lective approximation on TCAM blocks using a novel tech-

nique of  long precharge refresh times to adaptively bal-

ance the computational energy and quality of service.  

4 MASC TCAM ARCHITECTURE  

4.1 Motivation 

In this paper we propose a Multiple-Access Single-

Charge (MASC) TCAM which can perform multiple search 

operations with a single precharge of MLs. In conventional 

TCAM, all rows (MLs) precharge to VDD voltage. In 

search mode, if the input pattern has a mismatch with any 

prestored rows, the ML starts discharging. In the case of a 

hit in the TCAM, the voltage on hit ML(s) stays high, while 

all other rows discharge to zero. For the next search oper-

ation we must precharge all rows again. This high energy 

consumption of precharging and discharging of MLs is the 

primary cause of the high TCAM search energy consump-

tion. 

To decrease the charge and discharge energy, we 
propose MASC which can perform search operations 
with extremely low energy consumption. The func-
tionality of the proposed cell is similar to conventional 
TCAM with the difference that during the search op-
erations, MLs discharge only when there is a match 
with the input patterns. In case of a mismatch, TCAM 

rows retain their precharge voltage. This allows us to 
use ML voltage of missed rows to perform more search 
operations without another precharge cycle. After 
each search, we selectively precharge the hit MLs us-
ing a simple circuit. A complete refresh of MLs is per-
formed after a specific number of cycles. This signifi-
cantly reduces the energy consumption of the TCAM 
by decreasing the number of charges and discharges. 

4.2 MASC TCAM Cell and Encoding 

2T-2R TCAM: We use an encoding technique [15] to 

design the MASC TCAM, as shown in Fig. 3. Each TCAM 

cell has two memristor devices and two access transistors. 

The values of these memristors are prestored in the TCAM 

so that each block has only one low resistance (L). The ta-

bles of store and search operations of 2-bit TCAM with and 

without encoding schemes are shown in Fig. 3. For the 

search operation, the input patterns are first transformed 

by the encoding block. This block activates one of the four 

possible combinations of the input signals ( 1 2S S , 1 2S S ,

1 2S S , 1 2S S ) based on Fig. 3. These signals activate only one 

access transistor per 2-bit encoding block. For a hit, the ac-

cess transistor activates the memristor with low resistance 

and ML starts to discharge. In case of a mismatch, the ac-

cess transistor related to just one of the high resistance (H) 

devices will be connected. This limits ML leakage currents 

to one transistor in each encoding block. 

ML

2 1S S
2 1S S 2 1S S 2 1S S

ML

2S
2S1S1S

2-bit encoding

2-bit normal TCAM

 

Fig. 3. 2T-2R TCAM cell with and without encoding scheme 

In conventional TCAM, the number of leaky cells de-

pends on the length of bitline. For large word sizes, the ac-

cess transistors of many cells may be activated depending 

on the input pattern. This can discharge the ML uninten-

tionally and yield incorrect search results. For efficient and 

reliable search in TCAM, sufficient margin must be present 

between the match and mismatch currents. The worst-case 

difference between the currents occurs when all cells are 

matched (no discharge), and when just one of the cells is 

unmatched. In contrast, in the proposed MASC TCAM, in-

creasing the size of encoding blocks improves the TCAM 

sense margin and makes the search operation easier since 

in any encoding block size, the number of leaky cells from 
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ML on a miss is limited to a single cell. 

Crossbar TCAM: We next propose a new MASC TCAM 

based on crossbar memristor memories. The structure of 

proposed crossbar MASC is shown in Fig. 4. This cell con-

sists of two memristor devices with no access transistor. 

Data prestores in memristors based on their resistance 

states.  During the search operation, the ML precharges to 

VRead and the input (search data) activates the select lines. 

The ML starts discharging in the case of a mismatch be-

tween prestore and input data.  In MASC, we use the en-

coding scheme to prestore and search the data on crossbar 

TCAM. In crossbar MASC with 2-bit encoding (see Fig. 5), 

one of the memristive devices is in low resistance (L) and 

others are in high resistance mode (H). To enable MASC 

functionality on the crossbar cell, during each search oper-

ation, just one of the select lines connects to ground (GND) 

and all others are connected to Vdd. 

1S1S

Crossbar MASC with 2-bit encoding

2-bit normal crossbar TCAM

2 1S S 2 1S S 2 1S S 2 1S S

2S 2S

ML

ML

 
Fig. 4. Crossbar TCAM with and without encoding scheme 

 Our evaluation shows that the lack of access transistor 

increases the leakage power of the crossbar MASC relative 

to 2T-2R structure. This results in lower noise margin and 

higher precharging cycles of crossbar MASC compared to 

2T-2R TCAM, to obtain the same level of accuracy. Cross-

bar MASC can be implemented on the top of FPU with no 

area penalty.  To control the leakage current of resistive 

based TCAM, we use W/SiGe/SiAg structure with high 

OFF resistance [31]. Our evaluation shows that the pro-

posed small size crossbar TCAM has acceptable delay so 

that it can be placed alongside FPU pipelined stages.   

4.3 MASC TCAM architecture 

The architecture of proposed MASC TCAM is shown 

in Fig. 5. The MASC search operation is done in two stages. 

To avoid long search delay and energy consumption of 

large word size TCAMs, we split the search into several 

short word size TCAM searches. Each partial TCAM 

searches a part of the input data. In GPGPU with 32-bit 

search operations, we separated the bitline at 2:16 (sixteen 

2-bit TCAMs), 4:8 TCAM (eight 4-bit TCAMs), and 8:4 

TCAM (four 8-bit TCAMs) searches. This split sends 16, 8 

and 4 output signals to the second TCAM stage (see Fig. 5). 

The second stage logically ORs the EnL signals of the first 

stage TCAM using another TCAM stage.  If the input pat-

tern matches in the same row of all partial TCAMs, the in-

put pattern is considered as a hit on that row. This requires 

a single TCAM cell and small encoder block that produces 

complement signals (e.g. 1_1EnL , 1_ 2EnL , …, 1_EnL m  for 

m-bit encoding) to activate the first TCAM cell. In other 

words, the data in the second TCAM stage is fixed, and if 

the data matches in the same row of all partial TCAMs, a 

single cell is activated. 

4.4 Refresh and MASC Approximation 

We define the refresh period as the number of search 

cycles that can be performed without precharging. This 

number depends on the word-size of the partial TCAM 

blocks. This precharging cycle is determined by the 

amount of the cell leakage through the ML in every search 

operation. In the proposed MASC, the best and the worst 

case leakage scenarios are the same since there is always 
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Fig. 5. Proposed multiple-access single-cycle TCAM architecture 
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only one leaky cell for a miss independent to the block size. 

The ML voltages and average TCAM energy consumption 

(per cycle) for 8-bit encoding TCAM block is shown in Fig. 

6.  

Considering process variations is essential to approxi-

mate mode, because TCAMs with voltage overscaling are 

sensitive to variations. For example, if we design a TCAM 

to work with 1-bit hamming distance (HD), variations on 

TCAM parameters can instead make the same TCAM have 

worse accuracy, such as giving back a 2-bit hamming dis-

tance result as if it is only 1-bit HD. Therefore, to ensure a 

more predictable design which can guarantee quality of 

service, we design our TCAM based on the worst-case sce-

nario. To calculate this refresh cycle, we considered a 10% 

process variation on the resistance value, the size, and 

threshold voltage of access transistors [41]. Based on this 

variation, we calculate the maximum discharging current 

of the ML (low resistance, low threshold value and large 

transistor size) and then set the precharging cycle corre-

sponding to 1-bit hamming distance. Such worst-case de-

sign guarantees that the ML will not accept more than de-

sired mismatches under process variations. 

We define a refresh period to be acceptable if it results 

in correct matches in 1000 Monte Carlo simulations. The 8-

bit MASC can perform four consecutive search cycles with-

out a complete precharge. With 2-bit and 4-bit MASC, the 

refresh periods are 7 and 5 cycles. The proposed technique 

reduces the search energy consumption of the TCAM sig-

nificantly by reducing precharge requirement. 

Performing more search operations than these refresh 
periods results in TCAM search error. Fig. 7 shows the nor-
malized ML voltage on TCAM with different precharging 
cycles at the last cycle of search. We set the search clock 
period as the maximum delay the last period. We consider 
having mismatch in every search cycle. Our circuit level 
simulation on 8-bit TCAM shows that in order to have an 
error-free search operation we need the ML voltage higher 
than 850mV (see Fig. 7). This means that for exact matching 
we can limit the period of precharging to 4 cycles. Measur-
ing the average energy of a search operation after 4 cycles 
shows that the proposed design can achieve up to 3.2X 
lower search energy with respect to conventional TCAM 
design. Using longer precharging period makes the search 
operation unstable and increases the probability of error. 
Our evaluations also show that ML voltages of 775mV and 
650mV correspond to one and two bits Hamming distance 
in a TCAM search. For MASC (crossbar MASC) 1-HD/2-
HD are defined by 6/8-cycle (5/7-cycle) precharging cycle 
periods respectively.  

Another advantage of the proposed TCAM is its ability to 
control approximation by implementing long precharging cy-
cles on selective blocks. In the proposed architecture, all 
blocks do not have the same effect on the result of computa-
tion. Applying long precharge cycle on the least significant 
bits has lower impact on the results of computation compared 
to most significant bits. The MASC allows us to implement 1-

HD and 2-HD approximation on selective TCAM blocks us-
ing multiple precharging cycles. A simple precharging con-
troller shown in Fig. 5 sets the refresh time of each partial 
TCAM based on the running application and its quality of ser-
vice requirements. We study the effect of approximation on 
the GPGPU energy savings and output quality in section 5. 

 
Fig. 6. Energy & ML voltage vs. precharging cycles of 8-bit MASC  

 
Fig. 7. ML Voltage in multiple precharging schemes of 8-bit MASC 

4.5 MASC Framework  

The execution flow of MASC has two main steps: design 

time profiling and runtime processing.  During profiling 

we use OpenCL kernel and host code to train the associa-

tive memory. This allows us to find the high frequency pat-

terns (HFP) to put in the MASC. In this work we used both 

vision and general OpenCL apps.  Caltech 101 computer 

vision [42] dataset has testing and training data for our im-

age processing applications. For general OpenCL applica-

tions we include Matrix Multiplication, Bionomial Option, 

QuasiRandom, DwHaar1D, with random streamed data. 

The training is done on 10% of the input dataset. The host 

code saves and ranks the input patterns for each FPU op-

eration based on their frequency. The AMD compute ab-

straction layer (CAL) provides a runtime device driver li-

brary and allows the host program to work with the stream 

cores at the lowest level. The programming of the TCAMs 

is done in software by using host code (AM Updater block 

shown in Fig. 8).  A number of MASC rows are initialized 

based on the energy efficiency and accuracy requirements. 
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TCAM in all compute units of GPU is programmed con-

currently with the same data based on the FPU type.  

SQRT: {a1} à {q1}

MUL: {c1, d1} à {q1}

ADD: {a1, b1} à {q1}

MAC: {a1, b1, c1} à {q1}
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Fig. 8. Approximate GPU framework with MASC TCAM   

To find the approximate configuration of MASC for 
each application, the accuracy checker block compares (see 
Fig. 8) the GPU output file using approximate and exact 
MASC. The framework continues putting more partial 
TCAM blocks in the approximate mode as long as the ap-
plications meet the quality requirements. In this work we 
define the requirement as 30dB PSNR for image processing 
applications [43] and 10% average relative error for other 
applications [44].   

At run-time, MASC values are updated by preprofilied 
data as the application starts. The system checks the input 
patterns in FPUs and associative memory simultaneously. 
Any hit in TCAM stops the FPU computation and activates 
the corresponding row of resistive memory to retrieve pre-
computed values. Low energy consumption of proposed 
MASC allows us to use large size TCAM beside each pro-
cessing unit to provide high hit rates.  

Our proposed design does not sacrifice performance rela-
tive to the original GPU execution since the proposed associ-
ative memory is designed to perform the search operation 
with the same clock frequency of the FPUs. We minimize area 
cost by implementing crossbar MASC on top of the pro-
cessing (FPUs). The only disadvantage of crossbar TCAM is 
its low scalability (<1024 rows). However, we show that this 
is not important in our case since the minimum GPGPU en-
ergy consumption occurs with TCAM that has less than 64 
rows. MASC associative memory adds energy overheard to 
the computation which we evaluate in the next section. 

5 EXPERIMENTAL RESULTS 

5.1 Experimental Setup 

We evaluate the MASC-based associative memory on 

AMD Southern Island GPU Radeon HD 7970 device, a re-

cent GPU architecture. We use eight OpenCL applications 

including four image processing: Sobel, Robert, Sharpen, 

Shift [45] and four general applications: Matrix Multiplica-

tion, Bionomial Option, QuasiRandom, DwHaar1D  to 

show the efficiency of proposed MASC desing. We use 

Multi2sim, a cycle accurate CPU-GPU simulator  [46] and 

modified the kernel code to do profiling and run-time sim-

ulation. The 6-stage balanced FPUs are designed using 

Synopsys Design Compiler [47] in 45-nm ASIC flow. The 

FPUs are optimized for power based on different TCAM 

delay. 

We extracted the frequent patterns for adder (ADD), 

multipliers (MUL), SQRT, multiply-accumulator (MAC) 

FPUs. In GPGPU computation, the FPU operations have a 

variety number of inputs. The ADD and MUL accept two 

32-bit, SQRT one 32-bit and MAC three 32-bit input oper-

ands. Thus, the corresponding TCAMs require 64-bit, 32-

bit and 96-bit word sizes respectively. The circuit level sim-

ulation of TCAM design is done using HSPICE simulator 

on 45-nm technology. We use the memristive memory 

model from paper [31] to design the crossbar MASC archi-

tecture. The ON and OFF resistances are set to 50KΩ and 

50GΩ respectively. The details of 2T-2R TCAM simulation 

(sizing, resistors and capacitors, etc.) are designed based 

on [15].  

5.2 MASC Configurations 

The MASC structure consists of two TCAM search 

stages. The second level TCAM is fast, area and energy ef-

ficient, such that it does not have a major impact on system 

efficiency. In the first stage of MASC, the search operation 

can be done in 2-bit, 4-bit or 8-bit encoding granularities. 

The size of encoding block shows a tradeoff between area 

and energy consumption; (i) MASC with small encoding 

blocks (e.g. MASC 2:16) improves the total area efficiency 

of the TCAM. In contrast, large blocks such as 4-bit and 8-

bit encoding need more cells to design a TCAM. (ii) Large 

encoding blocks improve sense margin, since in the MASC 

structure the number of leaky cells from ML is always one 

independent of the block size.  (iii) Additionally, MASC 

with large encoding blocks reduce the number of partial 

matches, further improving the energy efficiency. This is 

because hits in partial blocks increase the number of unde-

sired charging and precharging. 

We define effective TCAM states (ETS) as the ratio of num-

ber of TCAM rows to the number of available states at each 

MASC granularity, which indicates the probability of hit. For 

32-row 2:16 MASC, ETS is 232 / 2 8 . This number decreases 

to 2 and 1/8 for 4-bit and 8-bit encoding blocks respectively. 

Lower ETS indicates that the system has lower probability of 

undesired hits. Our evaluation on four applications shows 

that MASC with ETS > 8 degrades search energy consump-

tion to below that of the conventional TCAM.  This limits the 

number of stages in 32-row and 64-row block, to 15-stages 

and 8-stages respectively. Thus, stability and energy effi-

ciency of large encoding blocks come at the expense of area. 

However, the area overhead of resistive associative memories 

is negligible compared to the FPU area in GPU architecture. 



2168-6750 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2016.2565262, IEEE Transactions on Emerging Topics in Computing

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 

 

Further, if the associative memory area becomes an important 

design parameter, the MASC can be designed with smaller 

blocks. For energy efficient associative memory, employing 

MASC 8:4 results in the best energy and sense margin. 

 

Fig. 9. MASC and conventional 2T-2R TCAM delay in different TCAM 
size and different MASC configuration. 

Fig. 9 shows the delay of a 96-bit TCAM at different sizes. 

In the proposed design, the search operation is performed us-

ing several parallel partial searches. At small sizes, the con-

ventional TCAM has lower delay than MASC because of its 

single-stage search operation. However, at large sizes, the 

search operation of the conventional TCAM slows down due 

to the precharging delay. A highly partitioned MASC uses 

short and parallel precharging cycles, which offsets the over-

head of multiple stages. This results in lower delay especially 

in highly partitioned TCAMs at large sizes.    

The energy comparison shows that crossbar MASC con-

sumes much lower energy compared to 2T-2R MASC for each 

search operation.  Table 1 compares the energy consumption 

of crossbar and 2T-2T MASC in different sizes for 

ADD/MUL, SQRT, and MAC operations. This energy differ-

ence of each operation is the result of having TCAMs with dif-

ferent word sizes. Since TCAM for MAC operation uses 96-

bit to search and prestore three input operands, the corre-

sponding TCAM consumes more energy than other opera-

tions in each search. Similarly, the TCAM corresponding to 

ADD/MUL consumes more energy than SQRT since its word 

size is 2X wider. The energy difference of crossbar and 2T-2R 

MASC becomes more obvious with large TCAM sizes such 

that the crossbar consumes ~1.7X lower search energy than 

2T-2R MASC. Low energy consumption of crossbar MASC 

along with its capability to be placed at the top of the chip thus 

having low area overhead, make crossbar MASC an efficient 

associative memory for memory-based computation.   

5.3 MASC Size and Energy Efficiency 

To integrate the proposed design as an associative 

memory, we use 1T-1R memory structure along with MASC 

to pre-store the computational results for various operands. 

The normalized energy consumption of the GPGPU at differ-

ent sizes is shown in Figure 6. The FPU energy is calculated 

based on the measured TCAM delay at each size. There are 

two factors that affect the total GPGPU energy consumption: 

 FPU energy: In large TCAMs, higher hit-rate increases 

the percentage of the time that the processor is in clock-

gate mode. Small TCAMs clearly benefit from doubling 

size where new rows can pre-store a pattern with a high 

percentage of hit. But large TCAM already covers most 

of the frequent patterns so that adding new lines does not 

have a major impact on hit-rate improvement and energy 

efficiency. In addition, the delay of large TCAM allows 

the design compiler to optimize the FPU energy con-

sumption. 

 TCAM energy: High search energy consumption of a 

large TCAM limits the energy efficiency of the GPGPU 

processing. Therefore, in conventional associative 

memory, increasing the size to larger than 8-rows does 

not improve the hit-rate (and hence the FPU energy) 

enough to compensate for the large energy. Considering 

these factors, the minimum energy point of GPGPU us-

ing conventional associative memory occurs at 8-row 

(See Fig. 10 and Fig. 11). 

GPGPU using MASC associative memory achieves better en-
ergy efficiency at all TCAM sizes. The low energy consump-
tion of MASC TCAM shifts the minimum energy point of the 
GPGPU to larger TCAM sizes with 16 and 32 rows. As Fig. 10 
and Fig. 11 show, at these sizes, both 2T-2R and crossbar 
MASC have better or comparable energy savings compared 
to conventional TCAM. Our results show that GPGPU with 

TABLE 1. CROSSBAR AND 2T-2R ENERGY (FJ) COMPARISON IN DIFFERENT MASC CONFIGURATIONS AND SIZES FOR ADD/MUL (A/M), 
SQRT (SQ) AND MAC (MC) OPERATIONS. 

MASC type & Configu-

ration 

2-row 4-row 8-row 16-row 32-row 64-row 

SQ A/M MC SQ A/M MC SQ A/M MC SQ A/M MC SQ A/M MC SQ A/M MC 

2T-2R 

MASC 8:4 40 55 66 61 88 106 99 139 162 99 206 233 240 304 340 404 507 558 

MASC 4:8 75 103 124 114 166 198 186 261 303 296 385 437 450 570 638 756 950 1045 

MASC 2:16 118 161 194 178 259 310 291 408 474 462 602 683 703 89 996 1181 1483 1632 

Cross-

bar 

MASC 8:4 28 39 47 42 61 74 67 94 110 66 138 156 149 188 211 239 300 330 

MASC 4:8 54 75 90 80 117 140 129 181 210 206 269 305 290 367 411 432 542 597 

MASC 2:16 89 121 146 128 187 224 197 277 322 298 388 424 436 55 618 694 872 960 
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2T-2R MASC 8:4, MASC 4:8 and MASC 2:16 can achieve 
33.4%, 29.9% and 23.2% energy savings on average running 
eight different applications. Using crossbar MASC architec-
ture improves the energy savings to 37.7%, 35.4% and 30.1% 
for MASC 8:4, MASC 4:8 and MASC 2:16 respectively. In 
MASC, using small TCAMs or TCAMs with large encoding 
blocks (small ETS) decrease the number of undesired hit of 
partial TCAMs. Therefore, the energy efficiency of MASC 8:4 
is the result of better MASC partial hit controllability as com-
pared to MASC 2:16 and MASC 4:8. 

5.4 MASC Approximation 

Approximation in MASC is defined by the period of the 
precharging. With a period of 4-cycles, an 8-bit MASC TCAM 
performs error-free searches. Increasing the refresh period of 
8-bit TCAM to 6-cycle and 8-cycle creates one and two bits 
Hamming distance respectively. Our framework implements 
approximation in TCAM starting from the lower level TCAM 
blocks, since the mismatch on these blocks has lower effect on 
the computation result compared to error on most significant 
bits. Table 2 lists the maximum number of MASC blocks in 1-
HD and 2-HD approximation, and hit-rate improvement 
compared to exact matching for different applications such 
that the output PSNR does not drop below 30dB. The system 
is able to apply the approximation on m lower blocks of each 
MASC TCAM based on the running applications. The small 
controller block in Fig. 5 sends appropriate signals to row 
driver of each TCAM block to set the MLs refresh periods 
based on the running applications.  

There is a trade-off between the quality of service and 
GPGPU energy consumption. As Table 2 shows, approxima-
tions of TCAM increases TCAM hit-rate based on the number 

and size of blocks in approximate mode, and the depth of ap-
proximation (1-HD or 2-HD). Implementing refresh time re-
laxation on a large number of bitlines improves energy effi-
ciency by increasing the system hit-rate and reducing search 
energy, however this improvement is achieved at the expense 
of quality of service. In 2T-2R MASC 8:4, using long refresh 
periods on one block relaxes 25% of the entire bitline, while 
approximating a MASC 2:16 block relaxes 6.2% of the entire 
bitline. This wide range of relaxation significantly improves 
the system hit-rate and GPGPU energy saving. In addition, 
the system energy savings increase with TCAM sizes because 
large block with approximation benefit more from hit-rate 
improvement compared to small sizes. 

 

   
   Original Image-Sobel                   Exact computing            Approximate computing 

      PSNR=41.5dB 

   
     Original Image-Robert              Exact computing            Approximate computing 

                                                                                                        PSNR=36.3dB 

Fig. 12. Output quality for Sobel and Robert applications 

 

 

 

 

 

 

 

 

 

 

 

        (a) Sobel                                            (b) Robert                               (c) DWHaar             (d) QausiRandom 

Fig. 10. Normalized GPGPU energy consumption for different 2T-2R MASC sizes. 

 

 

 

 

 

 

 

 

 
        (a) Sobel                                            (b) Robert                               (c) DWHaar             (d) QausiRandom 

Fig. 11.  Normalized GPGPU energy consumption for different crossbar MASC sizes. 
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  TABLE 2. APPROXIMATION ON SELECTIVE 2T-2R MASC BLOCKS 

Application Type Sobel Robert Sharpen Shift 

TCAM Configuration 2:16 4:8 8:4 2:16 4:8 8:4 2:16 4:8 8:4 2:16 4:8 8:4 

1-

HD 

# of blocks 
3 

(18.7%) 

2 

(25%) 

1 

(25%) 

3 

(18.7%) 

2 

(25%) 

2 

(50%) 

3 

(18.7%) 

3 

(37.5%) 

2 

(50%) 

2 

(18.7%) 

2 

(25%) 

1 

(25%) 

PSNR 31.0dB 32.4dB 41.5dB 33.4dB 34.7dB 36.4dB 35.5dB 32.8dB 36.3dB 34.9dB 32.3dB 40.3dB 

Hit-rate 

improvement 
9.6% 8.3% 5.1% 7.7% 9.3% 13.5% 7.8% 10.5% 12.2% 6.8% 7.6% 4.8% 

2-

HD 

# of blocks 
2 

(12.5%) 

1 

(12.5%) 

1 

(25%) 

2 

(12.5%) 

1 

(12.5%) 

1 

(25%) 

2 

(12.5%) 

2 

(25%) 

1 

(25%) 

1 

(6.2%) 

1 

(12.5%) 

0 

(0%) 

PSNR 30.3dB 34.6dB 32.2dB 31.2dB 42.6dB 39.1dB 32.4dB 30.4dB 39.5dB 37.5dB 35.2dB 
Origi-

nal 

Hit-rate 

improvement 
3.2% 4.5% 8.2% 7.9% 6.4% 9.1% 6.8% 8.1% 9.3% 2.8% 4.4% 0% 

 

 
                                  (a) Sobel                                      (b) Robert                         (c) Sharpen                          (d) Shift 

 
(a) Matrix                                 (b) QuasiRandom           (c) DwHaar                        (d) Binomial 

Fig. 13. Normalized Energy consumption of GPGPU in 1-HD and 2-HD approximation of in 2T-2T MASC 

 

 

 

 

 

 

 

 

                                  (a) Sobel                                      (b) Robert                         (c) Sharpen                          (d) Shift 

 

 

 

 

 

 

 

 

 
(a) Matrix                                 (b) QuasiRandom           (c) DwHaar                        (d) Binomial 

Figure 14. Normalized Energy consumption of GPGPU in 1-HD and 2-HD approximation of crossbar MASC  
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MASC can provide enough accuracy by selecting how 
many blocks are leveraging approximation. For example, Fig. 
12 shows the visual results of Sobel, Robert and Sharpen appli-
cation using the original computation (i.e., the golden image 
case) and approximate computation, resulting in no perceiv-
able change. 

FPUs consume most of the energy in GPGPU – in our case 
89%. Fig. 13 and Fig. 14 show the energy improvement of the 
FPUs in the GPGPU architecture using 2T-2R and crossbar 
MASC with exact matching, 1-HD and 2-HD implementa-
tions. Our results show that the total computational energy of 
the FPUs using 2T-2R MASC 8:4, MASC 4:8 and MASC 2:16 
decreases by 38.1%, 35.1% and 29.2% (36.7%, 36.1% and 
31.4%) on average for 1-HD (2-HD) implementation respec-
tively, ensuring acceptable quality of service (PSNR>30dB for 
image processing and average relative error <10% for other 
applications). This indicates that FPUs using proposed 2T-2R 
MASC achieves 1.8X higher energy savings for exact match-
ing with respect to conventional TCAM. For crossbar MASC 
these energy savings are 42.6%, 39.4% and 34.2% (43.1%, 
40.8% and 36.5%) on average for MASC 8:4, MASC 4:8 and 
MASC 2:16 in 1-HD (2-HD) approximation. In summary, our 
evaluation shows that using 2T-2R and crossbar MASC can 
improve FPUs computational energy by 1.77X and 1.93X 
compared to applying conventional voltage overscaling on 
TCAM. 

Table 3 shows the impact of MASC on the overall GPGPU 
computation energy considering both floating point and inte-
ger units. The result shows that for all tested applications, the 
FPUs are the main source of GPGPU energy consumption, 
where they consume about 89% of overall energy. Therefore, 
for MAC 8:4 in 2-HD approximation, the 2T-2R and crossbar 
can improve overall GPGPU computation energy by 35% and 
39% respectively, while providing good quality of service. 

TABLE 3. OVERAL GPGPU COMPUTATION ENERGY SAVINGS 

USING 2T-2R AND CROSSBAR MASC  

 Sobel Robert Sharpen Shift Matrix Quasi Dwh Binom 

2T-2R 33% 49% 33% 25% 34% 43% 39% 23% 

Crossbr 40% 51% 43% 31% 39% 43% 42% 22% 

6 CONCLUSION 

In this paper we propose an ultra-low energy multiple-
access single-charge TCAM which significantly decreases 
the energy consumption of the associative memory. A con-
ventional TCAM discharges all missed rows when per-
forming a search operation, consuming a large amount of 
energy. We propose the MASC TCAM design, which dis-
charges only the hit row(s) while miss rows stay charged. 
This allows us to use the charge of the missed lines to per-
form multiple search operations. We explore the efficiency 
of the design on 2R-2R and crossbar MASC TCAMS. Our 
evaluation shows that the proposed 8-bit TCAM can 
achieve error-free search operations using a period of 4-cy-
cles for precharging. Increasing the period of precharging 
improves the TCAM search energy efficiency at the ex-
pense of accuracy of the matching patterns. We also 

showed that crossbar MASC not only improves the search 
energy efficiency, but also addresses the area issue of 
MASC by implementing it at the top of the chip. The pro-
posed approximate MASC (crossbar MASC) decreases the 
energy consumption of the overall GPGPU by 35% (39%) 
on average with acceptable quality of service. These sav-
ings of using MASC (crossbar MASC) are 1.77X (1.93X) 
higher than approximation using conventional voltage 
overscaling technique. 
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