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2T-2R MASC 8:4, MASC 4:8 and MASC 2:16 can achieve 
33.4%, 29.9% and 23.2% energy savings on average running 
eight different applications. Using crossbar MASC architec-
ture improves the energy savings to 37.7%, 35.4% and 30.1% 
for MASC 8:4, MASC 4:8 and MASC 2:16 respectively. In 
MASC, using small TCAMs or TCAMs with large encoding 
blocks (small ETS) decrease the number of undesired hit of 
partial TCAMs. Therefore, the energy efficiency of MASC 8:4 
is the result of better MASC partial hit controllability as com-
pared to MASC 2:16 and MASC 4:8. 

5.4 MASC Approximation 

Approximation in MASC is defined by the period of the 
precharging. With a period of 4-cycles, an 8-bit MASC TCAM 
performs error-free searches. Increasing the refresh period of 
8-bit TCAM to 6-cycle and 8-cycle creates one and two bits 
Hamming distance respectively. Our framework implements 
approximation in TCAM starting from the lower level TCAM 
blocks, since the mismatch on these blocks has lower effect on 
the computation result compared to error on most significant 
bits. Table 2 lists the maximum number of MASC blocks in 1-
HD and 2-HD approximation, and hit-rate improvement 
compared to exact matching for different applications such 
that the output PSNR does not drop below 30dB. The system 
is able to apply the approximation on m lower blocks of each 
MASC TCAM based on the running applications. The small 
controller block in Fig. 5 sends appropriate signals to row 
driver of each TCAM block to set the MLs refresh periods 
based on the running applications.  

There is a trade-off between the quality of service and 
GPGPU energy consumption. As Table 2 shows, approxima-
tions of TCAM increases TCAM hit-rate based on the number 

and size of blocks in approximate mode, and the depth of ap-
proximation (1-HD or 2-HD). Implementing refresh time re-
laxation on a large number of bitlines improves energy effi-
ciency by increasing the system hit-rate and reducing search 
energy, however this improvement is achieved at the expense 
of quality of service. In 2T-2R MASC 8:4, using long refresh 
periods on one block relaxes 25% of the entire bitline, while 
approximating a MASC 2:16 block relaxes 6.2% of the entire 
bitline. This wide range of relaxation significantly improves 
the system hit-rate and GPGPU energy saving. In addition, 
the system energy savings increase with TCAM sizes because 
large block with approximation benefit more from hit-rate 
improvement compared to small sizes. 
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Fig. 12. Output quality for Sobel and Robert applications 

 

 

 

 

 

 

 

 

 

 

 

        (a) Sobel                                            (b) Robert                               (c) DWHaar             (d) QausiRandom 

Fig. 10. Normalized GPGPU energy consumption for different 2T-2R MASC sizes. 
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Fig. 11.  Normalized GPGPU energy consumption for different crossbar MASC sizes. 
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  TABLE 2. APPROXIMATION ON SELECTIVE 2T-2R MASC BLOCKS 

Application Type Sobel Robert Sharpen Shift 

TCAM Configuration 2:16 4:8 8:4 2:16 4:8 8:4 2:16 4:8 8:4 2:16 4:8 8:4 

1-

HD 

# of blocks 
3 

(18.7%) 

2 

(25%) 

1 

(25%) 

3 

(18.7%) 

2 

(25%) 

2 

(50%) 

3 

(18.7%) 

3 

(37.5%) 

2 

(50%) 

2 

(18.7%) 

2 

(25%) 

1 

(25%) 

PSNR 31.0dB 32.4dB 41.5dB 33.4dB 34.7dB 36.4dB 35.5dB 32.8dB 36.3dB 34.9dB 32.3dB 40.3dB 

Hit-rate 

improvement 
9.6% 8.3% 5.1% 7.7% 9.3% 13.5% 7.8% 10.5% 12.2% 6.8% 7.6% 4.8% 

2-

HD 

# of blocks 
2 

(12.5%) 

1 

(12.5%) 

1 

(25%) 

2 

(12.5%) 

1 

(12.5%) 

1 

(25%) 

2 

(12.5%) 

2 

(25%) 

1 

(25%) 

1 

(6.2%) 

1 

(12.5%) 

0 

(0%) 

PSNR 30.3dB 34.6dB 32.2dB 31.2dB 42.6dB 39.1dB 32.4dB 30.4dB 39.5dB 37.5dB 35.2dB 
Origi-

nal 

Hit-rate 

improvement 
3.2% 4.5% 8.2% 7.9% 6.4% 9.1% 6.8% 8.1% 9.3% 2.8% 4.4% 0% 

 

 
                                  (a) Sobel                                      (b) Robert                         (c) Sharpen                          (d) Shift 

 
(a) Matrix                                 (b) QuasiRandom           (c) DwHaar                        (d) Binomial 

Fig. 13. Normalized Energy consumption of GPGPU in 1-HD and 2-HD approximation of in 2T-2T MASC 
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(a) Matrix                                 (b) QuasiRandom           (c) DwHaar                        (d) Binomial 

Figure 14. Normalized Energy consumption of GPGPU in 1-HD and 2-HD approximation of crossbar MASC  
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MASC can provide enough accuracy by selecting how 
many blocks are leveraging approximation. For example, Fig. 
12 shows the visual results of Sobel, Robert and Sharpen appli-
cation using the original computation (i.e., the golden image 
case) and approximate computation, resulting in no perceiv-
able change. 

FPUs consume most of the energy in GPGPU – in our case 
89%. Fig. 13 and Fig. 14 show the energy improvement of the 
FPUs in the GPGPU architecture using 2T-2R and crossbar 
MASC with exact matching, 1-HD and 2-HD implementa-
tions. Our results show that the total computational energy of 
the FPUs using 2T-2R MASC 8:4, MASC 4:8 and MASC 2:16 
decreases by 38.1%, 35.1% and 29.2% (36.7%, 36.1% and 
31.4%) on average for 1-HD (2-HD) implementation respec-
tively, ensuring acceptable quality of service (PSNR>30dB for 
image processing and average relative error <10% for other 
applications). This indicates that FPUs using proposed 2T-2R 
MASC achieves 1.8X higher energy savings for exact match-
ing with respect to conventional TCAM. For crossbar MASC 
these energy savings are 42.6%, 39.4% and 34.2% (43.1%, 
40.8% and 36.5%) on average for MASC 8:4, MASC 4:8 and 
MASC 2:16 in 1-HD (2-HD) approximation. In summary, our 
evaluation shows that using 2T-2R and crossbar MASC can 
improve FPUs computational energy by 1.77X and 1.93X 
compared to applying conventional voltage overscaling on 
TCAM. 

Table 3 shows the impact of MASC on the overall GPGPU 
computation energy considering both floating point and inte-
ger units. The result shows that for all tested applications, the 
FPUs are the main source of GPGPU energy consumption, 
where they consume about 89% of overall energy. Therefore, 
for MAC 8:4 in 2-HD approximation, the 2T-2R and crossbar 
can improve overall GPGPU computation energy by 35% and 
39% respectively, while providing good quality of service. 

TABLE 3. OVERAL GPGPU COMPUTATION ENERGY SAVINGS 

USING 2T-2R AND CROSSBAR MASC  

 Sobel Robert Sharpen Shift Matrix Quasi Dwh Binom 

2T-2R 33% 49% 33% 25% 34% 43% 39% 23% 

Crossbr 40% 51% 43% 31% 39% 43% 42% 22% 

6 CONCLUSION 

In this paper we propose an ultra-low energy multiple-
access single-charge TCAM which significantly decreases 
the energy consumption of the associative memory. A con-
ventional TCAM discharges all missed rows when per-
forming a search operation, consuming a large amount of 
energy. We propose the MASC TCAM design, which dis-
charges only the hit row(s) while miss rows stay charged. 
This allows us to use the charge of the missed lines to per-
form multiple search operations. We explore the efficiency 
of the design on 2R-2R and crossbar MASC TCAMS. Our 
evaluation shows that the proposed 8-bit TCAM can 
achieve error-free search operations using a period of 4-cy-
cles for precharging. Increasing the period of precharging 
improves the TCAM search energy efficiency at the ex-
pense of accuracy of the matching patterns. We also 

showed that crossbar MASC not only improves the search 
energy efficiency, but also addresses the area issue of 
MASC by implementing it at the top of the chip. The pro-
posed approximate MASC (crossbar MASC) decreases the 
energy consumption of the overall GPGPU by 35% (39%) 
on average with acceptable quality of service. These sav-
ings of using MASC (crossbar MASC) are 1.77X (1.93X) 
higher than approximation using conventional voltage 
overscaling technique. 
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